| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0o |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
| 2 |
|
simpr |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
| 3 |
|
oveq2 |
|- ( m = ( ( N - 1 ) / 2 ) -> ( 2 x. m ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
| 4 |
3
|
oveq1d |
|- ( m = ( ( N - 1 ) / 2 ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 5 |
4
|
eqeq2d |
|- ( m = ( ( N - 1 ) / 2 ) -> ( N = ( ( 2 x. m ) + 1 ) <-> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) |
| 6 |
5
|
adantl |
|- ( ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) /\ m = ( ( N - 1 ) / 2 ) ) -> ( N = ( ( 2 x. m ) + 1 ) <-> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) |
| 7 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 8 |
|
peano2cnm |
|- ( N e. CC -> ( N - 1 ) e. CC ) |
| 9 |
7 8
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. CC ) |
| 10 |
|
2cnd |
|- ( N e. NN0 -> 2 e. CC ) |
| 11 |
|
2ne0 |
|- 2 =/= 0 |
| 12 |
11
|
a1i |
|- ( N e. NN0 -> 2 =/= 0 ) |
| 13 |
9 10 12
|
divcan2d |
|- ( N e. NN0 -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
| 14 |
13
|
oveq1d |
|- ( N e. NN0 -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 15 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 16 |
7 15
|
syl |
|- ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) |
| 17 |
14 16
|
eqtr2d |
|- ( N e. NN0 -> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 18 |
17
|
adantr |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 19 |
2 6 18
|
rspcedvd |
|- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> E. m e. NN0 N = ( ( 2 x. m ) + 1 ) ) |
| 20 |
1 19
|
syldan |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> E. m e. NN0 N = ( ( 2 x. m ) + 1 ) ) |