Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. NN0 ) |
2 |
|
oveq2 |
|- ( m = ( N / 2 ) -> ( 2 x. m ) = ( 2 x. ( N / 2 ) ) ) |
3 |
2
|
adantl |
|- ( ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) /\ m = ( N / 2 ) ) -> ( 2 x. m ) = ( 2 x. ( N / 2 ) ) ) |
4 |
3
|
eqeq2d |
|- ( ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) /\ m = ( N / 2 ) ) -> ( N = ( 2 x. m ) <-> N = ( 2 x. ( N / 2 ) ) ) ) |
5 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
6 |
|
2cnd |
|- ( N e. NN0 -> 2 e. CC ) |
7 |
|
2ne0 |
|- 2 =/= 0 |
8 |
7
|
a1i |
|- ( N e. NN0 -> 2 =/= 0 ) |
9 |
|
divcan2 |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( N / 2 ) ) = N ) |
10 |
9
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> N = ( 2 x. ( N / 2 ) ) ) |
11 |
5 6 8 10
|
syl3anc |
|- ( N e. NN0 -> N = ( 2 x. ( N / 2 ) ) ) |
12 |
11
|
adantr |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> N = ( 2 x. ( N / 2 ) ) ) |
13 |
1 4 12
|
rspcedvd |
|- ( ( N e. NN0 /\ ( N / 2 ) e. NN0 ) -> E. m e. NN0 N = ( 2 x. m ) ) |