| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  2 )  ∈  ℕ0 ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑁  /  2 )  →  ( 2  ·  𝑚 )  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  ∧  𝑚  =  ( 𝑁  /  2 ) )  →  ( 2  ·  𝑚 )  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  ∧  𝑚  =  ( 𝑁  /  2 ) )  →  ( 𝑁  =  ( 2  ·  𝑚 )  ↔  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) ) | 
						
							| 5 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 6 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 7 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ≠  0 ) | 
						
							| 9 |  | divcan2 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝑁  /  2 ) )  =  𝑁 ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 11 | 5 6 8 10 | syl3anc | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 13 | 1 4 12 | rspcedvd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ∃ 𝑚  ∈  ℕ0 𝑁  =  ( 2  ·  𝑚 ) ) |