| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nneven |  |-  ( ( N e. NN /\ N e. Even ) -> ( N / 2 ) e. NN ) | 
						
							| 2 |  | oveq2 |  |-  ( m = ( N / 2 ) -> ( 2 x. m ) = ( 2 x. ( N / 2 ) ) ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( m = ( N / 2 ) -> ( N = ( 2 x. m ) <-> N = ( 2 x. ( N / 2 ) ) ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( N e. NN /\ N e. Even ) /\ m = ( N / 2 ) ) -> ( N = ( 2 x. m ) <-> N = ( 2 x. ( N / 2 ) ) ) ) | 
						
							| 5 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 6 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 7 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 8 | 7 | a1i |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 9 |  | divcan2 |  |-  ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( N / 2 ) ) = N ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> N = ( 2 x. ( N / 2 ) ) ) | 
						
							| 11 | 5 6 8 10 | syl3anc |  |-  ( N e. NN -> N = ( 2 x. ( N / 2 ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( N e. NN /\ N e. Even ) -> N = ( 2 x. ( N / 2 ) ) ) | 
						
							| 13 | 1 4 12 | rspcedvd |  |-  ( ( N e. NN /\ N e. Even ) -> E. m e. NN N = ( 2 x. m ) ) |