Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
2 |
1
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
3 |
|
subsub4 |
|- ( ( A e. CC /\ ( B - C ) e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - ( ( B - C ) + C ) ) ) |
4 |
2 3
|
syld3an2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - ( ( B - C ) + C ) ) ) |
5 |
|
npcan |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
6 |
5
|
oveq2d |
|- ( ( B e. CC /\ C e. CC ) -> ( A - ( ( B - C ) + C ) ) = ( A - B ) ) |
7 |
6
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( ( B - C ) + C ) ) = ( A - B ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) - C ) = ( A - B ) ) |