| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm3adift.1 |
|- C e. ~H |
| 2 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
| 3 |
2
|
fvoveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) ) |
| 4 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
| 5 |
3 4
|
breq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) ) |
| 6 |
|
fvoveq1 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( B -h C ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) |
| 7 |
6
|
oveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) |
| 8 |
7
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) ) |
| 9 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
| 10 |
9
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 11 |
8 10
|
breq12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 12 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 13 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
| 14 |
12 13 1
|
norm3adifii |
|- ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
| 15 |
5 11 14
|
dedth2h |
|- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) ) |