Metamath Proof Explorer


Theorem nornotOLD

Description: Obsolete version of nornot as of 8-Dec-2023. (Contributed by Remi, 25-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nornotOLD
|- ( -. ph <-> ( ph -\/ ph ) )

Proof

Step Hyp Ref Expression
1 pm4.56
 |-  ( ( -. ph /\ -. ph ) <-> -. ( ph \/ ph ) )
2 pm4.24
 |-  ( -. ph <-> ( -. ph /\ -. ph ) )
3 df-nor
 |-  ( ( ph -\/ ph ) <-> -. ( ph \/ ph ) )
4 1 2 3 3bitr4i
 |-  ( -. ph <-> ( ph -\/ ph ) )