Step |
Hyp |
Ref |
Expression |
1 |
|
nvof1o |
|- ( ( F Fn A /\ `' F = F ) -> F : A -1-1-onto-> A ) |
2 |
|
fveq1 |
|- ( `' F = F -> ( `' F ` ( F ` x ) ) = ( F ` ( F ` x ) ) ) |
3 |
2
|
ad2antlr |
|- ( ( ( F Fn A /\ `' F = F ) /\ x e. A ) -> ( `' F ` ( F ` x ) ) = ( F ` ( F ` x ) ) ) |
4 |
|
f1ocnvfv1 |
|- ( ( F : A -1-1-onto-> A /\ x e. A ) -> ( `' F ` ( F ` x ) ) = x ) |
5 |
1 4
|
sylan |
|- ( ( ( F Fn A /\ `' F = F ) /\ x e. A ) -> ( `' F ` ( F ` x ) ) = x ) |
6 |
3 5
|
eqtr3d |
|- ( ( ( F Fn A /\ `' F = F ) /\ x e. A ) -> ( F ` ( F ` x ) ) = x ) |
7 |
6
|
ralrimiva |
|- ( ( F Fn A /\ `' F = F ) -> A. x e. A ( F ` ( F ` x ) ) = x ) |
8 |
1 7
|
jca |
|- ( ( F Fn A /\ `' F = F ) -> ( F : A -1-1-onto-> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) ) |
9 |
|
f1of |
|- ( F : A -1-1-onto-> A -> F : A --> A ) |
10 |
|
ffn |
|- ( F : A --> A -> F Fn A ) |
11 |
10
|
adantr |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F Fn A ) |
12 |
|
nvocnv |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = F ) |
13 |
11 12
|
jca |
|- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> ( F Fn A /\ `' F = F ) ) |
14 |
9 13
|
sylan |
|- ( ( F : A -1-1-onto-> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> ( F Fn A /\ `' F = F ) ) |
15 |
8 14
|
impbii |
|- ( ( F Fn A /\ `' F = F ) <-> ( F : A -1-1-onto-> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) ) |