| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1lo1.1 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 2 |
|
o1lo12.2 |
|- ( ph -> M e. RR ) |
| 3 |
|
o1lo12.3 |
|- ( ( ph /\ x e. A ) -> M <_ B ) |
| 4 |
|
o1dm |
|- ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) |
| 5 |
4
|
a1i |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) ) |
| 6 |
|
lo1dm |
|- ( ( x e. A |-> B ) e. <_O(1) -> dom ( x e. A |-> B ) C_ RR ) |
| 7 |
6
|
a1i |
|- ( ph -> ( ( x e. A |-> B ) e. <_O(1) -> dom ( x e. A |-> B ) C_ RR ) ) |
| 8 |
1
|
ralrimiva |
|- ( ph -> A. x e. A B e. RR ) |
| 9 |
|
dmmptg |
|- ( A. x e. A B e. RR -> dom ( x e. A |-> B ) = A ) |
| 10 |
8 9
|
syl |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 11 |
10
|
sseq1d |
|- ( ph -> ( dom ( x e. A |-> B ) C_ RR <-> A C_ RR ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ A C_ RR ) -> A C_ RR ) |
| 13 |
1
|
renegcld |
|- ( ( ph /\ x e. A ) -> -u B e. RR ) |
| 14 |
13
|
adantlr |
|- ( ( ( ph /\ A C_ RR ) /\ x e. A ) -> -u B e. RR ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ A C_ RR ) -> M e. RR ) |
| 16 |
15
|
renegcld |
|- ( ( ph /\ A C_ RR ) -> -u M e. RR ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> M e. RR ) |
| 18 |
17 1
|
lenegd |
|- ( ( ph /\ x e. A ) -> ( M <_ B <-> -u B <_ -u M ) ) |
| 19 |
3 18
|
mpbid |
|- ( ( ph /\ x e. A ) -> -u B <_ -u M ) |
| 20 |
19
|
ad2ant2r |
|- ( ( ( ph /\ A C_ RR ) /\ ( x e. A /\ M <_ x ) ) -> -u B <_ -u M ) |
| 21 |
12 14 15 16 20
|
ello1d |
|- ( ( ph /\ A C_ RR ) -> ( x e. A |-> -u B ) e. <_O(1) ) |
| 22 |
1
|
o1lo1 |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( ( x e. A |-> B ) e. <_O(1) /\ ( x e. A |-> -u B ) e. <_O(1) ) ) ) |
| 23 |
22
|
rbaibd |
|- ( ( ph /\ ( x e. A |-> -u B ) e. <_O(1) ) -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |
| 24 |
21 23
|
syldan |
|- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |
| 25 |
24
|
ex |
|- ( ph -> ( A C_ RR -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) ) |
| 26 |
11 25
|
sylbid |
|- ( ph -> ( dom ( x e. A |-> B ) C_ RR -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) ) |
| 27 |
5 7 26
|
pm5.21ndd |
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |