| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ibar |  |-  ( N e. ZZ -> ( E. n e. ZZ N = ( ( 2 x. n ) + 1 ) <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 2 |  | eqcom |  |-  ( ( ( 2 x. n ) + 1 ) = N <-> N = ( ( 2 x. n ) + 1 ) ) | 
						
							| 3 | 2 | a1i |  |-  ( N e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N <-> N = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 4 | 3 | rexbidv |  |-  ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 5 |  | eqeq1 |  |-  ( z = N -> ( z = ( ( 2 x. n ) + 1 ) <-> N = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 6 | 5 | rexbidv |  |-  ( z = N -> ( E. n e. ZZ z = ( ( 2 x. n ) + 1 ) <-> E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 7 |  | dfodd6 |  |-  Odd = { z e. ZZ | E. n e. ZZ z = ( ( 2 x. n ) + 1 ) } | 
						
							| 8 | 6 7 | elrab2 |  |-  ( N e. Odd <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( N e. ZZ -> ( N e. Odd <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 10 | 1 4 9 | 3bitr4rd |  |-  ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |