Step |
Hyp |
Ref |
Expression |
1 |
|
ibar |
|- ( N e. ZZ -> ( E. n e. ZZ N = ( ( 2 x. n ) + 1 ) <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) ) |
2 |
|
eqcom |
|- ( ( ( 2 x. n ) + 1 ) = N <-> N = ( ( 2 x. n ) + 1 ) ) |
3 |
2
|
a1i |
|- ( N e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N <-> N = ( ( 2 x. n ) + 1 ) ) ) |
4 |
3
|
rexbidv |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N <-> E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) |
5 |
|
eqeq1 |
|- ( z = N -> ( z = ( ( 2 x. n ) + 1 ) <-> N = ( ( 2 x. n ) + 1 ) ) ) |
6 |
5
|
rexbidv |
|- ( z = N -> ( E. n e. ZZ z = ( ( 2 x. n ) + 1 ) <-> E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) |
7 |
|
dfodd6 |
|- Odd = { z e. ZZ | E. n e. ZZ z = ( ( 2 x. n ) + 1 ) } |
8 |
6 7
|
elrab2 |
|- ( N e. Odd <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) |
9 |
8
|
a1i |
|- ( N e. ZZ -> ( N e. Odd <-> ( N e. ZZ /\ E. n e. ZZ N = ( ( 2 x. n ) + 1 ) ) ) ) |
10 |
1 4 9
|
3bitr4rd |
|- ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |