Step |
Hyp |
Ref |
Expression |
1 |
|
ibar |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝑁 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
2 |
|
eqcom |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑁 → ( 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑧 = 𝑁 → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) |
7 |
|
dfodd6 |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) } |
8 |
6 7
|
elrab2 |
⊢ ( 𝑁 ∈ Odd ↔ ( 𝑁 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ Odd ↔ ( 𝑁 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ 𝑁 = ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
10 |
1 4 9
|
3bitr4rd |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ Odd ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |