| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ibar | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ( 𝑁  ∈  ℤ  ∧  ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 2 |  | eqcom | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑁  ∈  ℤ  →  ( ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑧  =  𝑁  →  ( 𝑧  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑧  =  𝑁  →  ( ∃ 𝑛  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 7 |  | dfodd6 | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑛  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑛 )  +  1 ) } | 
						
							| 8 | 6 7 | elrab2 | ⊢ ( 𝑁  ∈   Odd   ↔  ( 𝑁  ∈  ℤ  ∧  ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈   Odd   ↔  ( 𝑁  ∈  ℤ  ∧  ∃ 𝑛  ∈  ℤ 𝑁  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 10 | 1 4 9 | 3bitr4rd | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈   Odd   ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) |