Metamath Proof Explorer


Theorem odd2np1ALTV

Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion odd2np1ALTV N N Odd n 2 n + 1 = N

Proof

Step Hyp Ref Expression
1 ibar N n N = 2 n + 1 N n N = 2 n + 1
2 eqcom 2 n + 1 = N N = 2 n + 1
3 2 a1i N 2 n + 1 = N N = 2 n + 1
4 3 rexbidv N n 2 n + 1 = N n N = 2 n + 1
5 eqeq1 z = N z = 2 n + 1 N = 2 n + 1
6 5 rexbidv z = N n z = 2 n + 1 n N = 2 n + 1
7 dfodd6 Odd = z | n z = 2 n + 1
8 6 7 elrab2 N Odd N n N = 2 n + 1
9 8 a1i N N Odd N n N = 2 n + 1
10 1 4 9 3bitr4rd N N Odd n 2 n + 1 = N