| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odval.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odval.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | odval.3 |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | odval.4 |  |-  O = ( od ` G ) | 
						
							| 5 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = X ) | 
						
							| 7 |  | fveq2 |  |-  ( g = G -> ( .g ` g ) = ( .g ` G ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( g = G -> ( .g ` g ) = .x. ) | 
						
							| 9 | 8 | oveqd |  |-  ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) | 
						
							| 11 | 10 3 | eqtr4di |  |-  ( g = G -> ( 0g ` g ) = .0. ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) | 
						
							| 13 | 12 | rabbidv |  |-  ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) | 
						
							| 14 | 13 | csbeq1d |  |-  ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) | 
						
							| 15 | 6 14 | mpteq12dv |  |-  ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 16 |  | df-od |  |-  od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 17 | 15 16 1 | mptfvmpt |  |-  ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 18 |  | fvprc |  |-  ( -. G e. _V -> ( od ` G ) = (/) ) | 
						
							| 19 |  | fvprc |  |-  ( -. G e. _V -> ( Base ` G ) = (/) ) | 
						
							| 20 | 1 19 | eqtrid |  |-  ( -. G e. _V -> X = (/) ) | 
						
							| 21 | 20 | mpteq1d |  |-  ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 22 |  | mpt0 |  |-  ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) | 
						
							| 24 | 18 23 | eqtr4d |  |-  ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 25 | 17 24 | pm2.61i |  |-  ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) | 
						
							| 26 | 4 25 | eqtri |  |-  O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |