Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
oduoppcbas.d |
|- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
4 |
|
oduoppcbas.o |
|- O = ( oppCat ` C ) |
5 |
|
eqid |
|- ( ODual ` K ) = ( ODual ` K ) |
6 |
5
|
oduprs |
|- ( K e. Proset -> ( ODual ` K ) e. Proset ) |
7 |
2 6
|
syl |
|- ( ph -> ( ODual ` K ) e. Proset ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
5 8
|
odubas |
|- ( Base ` K ) = ( Base ` ( ODual ` K ) ) |
10 |
9
|
a1i |
|- ( ph -> ( Base ` K ) = ( Base ` ( ODual ` K ) ) ) |
11 |
3 7 10
|
prstcbas |
|- ( ph -> ( Base ` K ) = ( Base ` D ) ) |
12 |
11
|
eqcomd |
|- ( ph -> ( Base ` D ) = ( Base ` K ) ) |
13 |
1 2 12
|
prstcbas |
|- ( ph -> ( Base ` D ) = ( Base ` C ) ) |
14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
15 |
4 14
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
16 |
13 15
|
eqtrdi |
|- ( ph -> ( Base ` D ) = ( Base ` O ) ) |