| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s2 |
|- <" A B "> = ( <" A "> ++ <" B "> ) |
| 2 |
1
|
oveq1i |
|- ( <" A B "> oFC R C ) = ( ( <" A "> ++ <" B "> ) oFC R C ) |
| 3 |
|
simp1 |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> A e. S ) |
| 4 |
3
|
s1cld |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> <" A "> e. Word S ) |
| 5 |
|
simp2 |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> B e. S ) |
| 6 |
5
|
s1cld |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> <" B "> e. Word S ) |
| 7 |
|
simp3 |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> C e. T ) |
| 8 |
4 6 7
|
ofcccat |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> ++ <" B "> ) oFC R C ) = ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) ) |
| 9 |
2 8
|
eqtrid |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A B "> oFC R C ) = ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) ) |
| 10 |
|
ofcs1 |
|- ( ( A e. S /\ C e. T ) -> ( <" A "> oFC R C ) = <" ( A R C ) "> ) |
| 11 |
3 7 10
|
syl2anc |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A "> oFC R C ) = <" ( A R C ) "> ) |
| 12 |
|
ofcs1 |
|- ( ( B e. S /\ C e. T ) -> ( <" B "> oFC R C ) = <" ( B R C ) "> ) |
| 13 |
5 7 12
|
syl2anc |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" B "> oFC R C ) = <" ( B R C ) "> ) |
| 14 |
11 13
|
oveq12d |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) = ( <" ( A R C ) "> ++ <" ( B R C ) "> ) ) |
| 15 |
|
df-s2 |
|- <" ( A R C ) ( B R C ) "> = ( <" ( A R C ) "> ++ <" ( B R C ) "> ) |
| 16 |
14 15
|
eqtr4di |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) = <" ( A R C ) ( B R C ) "> ) |
| 17 |
9 16
|
eqtrd |
|- ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A B "> oFC R C ) = <" ( A R C ) ( B R C ) "> ) |