| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-s2 |  |-  <" A B "> = ( <" A "> ++ <" B "> ) | 
						
							| 2 | 1 | oveq1i |  |-  ( <" A B "> oFC R C ) = ( ( <" A "> ++ <" B "> ) oFC R C ) | 
						
							| 3 |  | simp1 |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> A e. S ) | 
						
							| 4 | 3 | s1cld |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> <" A "> e. Word S ) | 
						
							| 5 |  | simp2 |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> B e. S ) | 
						
							| 6 | 5 | s1cld |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> <" B "> e. Word S ) | 
						
							| 7 |  | simp3 |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> C e. T ) | 
						
							| 8 | 4 6 7 | ofcccat |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> ++ <" B "> ) oFC R C ) = ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A B "> oFC R C ) = ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) ) | 
						
							| 10 |  | ofcs1 |  |-  ( ( A e. S /\ C e. T ) -> ( <" A "> oFC R C ) = <" ( A R C ) "> ) | 
						
							| 11 | 3 7 10 | syl2anc |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A "> oFC R C ) = <" ( A R C ) "> ) | 
						
							| 12 |  | ofcs1 |  |-  ( ( B e. S /\ C e. T ) -> ( <" B "> oFC R C ) = <" ( B R C ) "> ) | 
						
							| 13 | 5 7 12 | syl2anc |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" B "> oFC R C ) = <" ( B R C ) "> ) | 
						
							| 14 | 11 13 | oveq12d |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) = ( <" ( A R C ) "> ++ <" ( B R C ) "> ) ) | 
						
							| 15 |  | df-s2 |  |-  <" ( A R C ) ( B R C ) "> = ( <" ( A R C ) "> ++ <" ( B R C ) "> ) | 
						
							| 16 | 14 15 | eqtr4di |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( ( <" A "> oFC R C ) ++ ( <" B "> oFC R C ) ) = <" ( A R C ) ( B R C ) "> ) | 
						
							| 17 | 9 16 | eqtrd |  |-  ( ( A e. S /\ B e. S /\ C e. T ) -> ( <" A B "> oFC R C ) = <" ( A R C ) ( B R C ) "> ) |