| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snex |  |-  { 0 } e. _V | 
						
							| 2 | 1 | a1i |  |-  ( ( A e. S /\ B e. T ) -> { 0 } e. _V ) | 
						
							| 3 |  | simpr |  |-  ( ( A e. S /\ B e. T ) -> B e. T ) | 
						
							| 4 |  | simpll |  |-  ( ( ( A e. S /\ B e. T ) /\ i e. { 0 } ) -> A e. S ) | 
						
							| 5 |  | s1val |  |-  ( A e. S -> <" A "> = { <. 0 , A >. } ) | 
						
							| 6 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 7 |  | fmptsn |  |-  ( ( 0 e. NN0 /\ A e. S ) -> { <. 0 , A >. } = ( i e. { 0 } |-> A ) ) | 
						
							| 8 | 6 7 | mpan |  |-  ( A e. S -> { <. 0 , A >. } = ( i e. { 0 } |-> A ) ) | 
						
							| 9 | 5 8 | eqtrd |  |-  ( A e. S -> <" A "> = ( i e. { 0 } |-> A ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. S /\ B e. T ) -> <" A "> = ( i e. { 0 } |-> A ) ) | 
						
							| 11 | 2 3 4 10 | ofcfval2 |  |-  ( ( A e. S /\ B e. T ) -> ( <" A "> oFC R B ) = ( i e. { 0 } |-> ( A R B ) ) ) | 
						
							| 12 |  | ovex |  |-  ( A R B ) e. _V | 
						
							| 13 |  | s1val |  |-  ( ( A R B ) e. _V -> <" ( A R B ) "> = { <. 0 , ( A R B ) >. } ) | 
						
							| 14 | 12 13 | ax-mp |  |-  <" ( A R B ) "> = { <. 0 , ( A R B ) >. } | 
						
							| 15 |  | fmptsn |  |-  ( ( 0 e. NN0 /\ ( A R B ) e. _V ) -> { <. 0 , ( A R B ) >. } = ( i e. { 0 } |-> ( A R B ) ) ) | 
						
							| 16 | 6 12 15 | mp2an |  |-  { <. 0 , ( A R B ) >. } = ( i e. { 0 } |-> ( A R B ) ) | 
						
							| 17 | 14 16 | eqtri |  |-  <" ( A R B ) "> = ( i e. { 0 } |-> ( A R B ) ) | 
						
							| 18 | 11 17 | eqtr4di |  |-  ( ( A e. S /\ B e. T ) -> ( <" A "> oFC R B ) = <" ( A R B ) "> ) |