Metamath Proof Explorer


Theorem ofcs1

Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)

Ref Expression
Assertion ofcs1 A S B T ⟨“ A ”⟩ fc R B = ⟨“ A R B ”⟩

Proof

Step Hyp Ref Expression
1 snex 0 V
2 1 a1i A S B T 0 V
3 simpr A S B T B T
4 simpll A S B T i 0 A S
5 s1val A S ⟨“ A ”⟩ = 0 A
6 0nn0 0 0
7 fmptsn 0 0 A S 0 A = i 0 A
8 6 7 mpan A S 0 A = i 0 A
9 5 8 eqtrd A S ⟨“ A ”⟩ = i 0 A
10 9 adantr A S B T ⟨“ A ”⟩ = i 0 A
11 2 3 4 10 ofcfval2 A S B T ⟨“ A ”⟩ fc R B = i 0 A R B
12 ovex A R B V
13 s1val A R B V ⟨“ A R B ”⟩ = 0 A R B
14 12 13 ax-mp ⟨“ A R B ”⟩ = 0 A R B
15 fmptsn 0 0 A R B V 0 A R B = i 0 A R B
16 6 12 15 mp2an 0 A R B = i 0 A R B
17 14 16 eqtri ⟨“ A R B ”⟩ = i 0 A R B
18 11 17 eqtr4di A S B T ⟨“ A ”⟩ fc R B = ⟨“ A R B ”⟩