Metamath Proof Explorer


Theorem ofcs2

Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 9-Oct-2018)

Ref Expression
Assertion ofcs2 ASBSCT⟨“AB”⟩fcRC=⟨“ARCBRC”⟩

Proof

Step Hyp Ref Expression
1 df-s2 ⟨“AB”⟩=⟨“A”⟩++⟨“B”⟩
2 1 oveq1i ⟨“AB”⟩fcRC=⟨“A”⟩++⟨“B”⟩fcRC
3 simp1 ASBSCTAS
4 3 s1cld ASBSCT⟨“A”⟩WordS
5 simp2 ASBSCTBS
6 5 s1cld ASBSCT⟨“B”⟩WordS
7 simp3 ASBSCTCT
8 4 6 7 ofcccat ASBSCT⟨“A”⟩++⟨“B”⟩fcRC=⟨“A”⟩fcRC++⟨“B”⟩fcRC
9 2 8 eqtrid ASBSCT⟨“AB”⟩fcRC=⟨“A”⟩fcRC++⟨“B”⟩fcRC
10 ofcs1 ASCT⟨“A”⟩fcRC=⟨“ARC”⟩
11 3 7 10 syl2anc ASBSCT⟨“A”⟩fcRC=⟨“ARC”⟩
12 ofcs1 BSCT⟨“B”⟩fcRC=⟨“BRC”⟩
13 5 7 12 syl2anc ASBSCT⟨“B”⟩fcRC=⟨“BRC”⟩
14 11 13 oveq12d ASBSCT⟨“A”⟩fcRC++⟨“B”⟩fcRC=⟨“ARC”⟩++⟨“BRC”⟩
15 df-s2 ⟨“ARCBRC”⟩=⟨“ARC”⟩++⟨“BRC”⟩
16 14 15 eqtr4di ASBSCT⟨“A”⟩fcRC++⟨“B”⟩fcRC=⟨“ARCBRC”⟩
17 9 16 eqtrd ASBSCT⟨“AB”⟩fcRC=⟨“ARCBRC”⟩