Step |
Hyp |
Ref |
Expression |
1 |
|
ofcccat.1 |
|- ( ph -> F e. Word S ) |
2 |
|
ofcccat.2 |
|- ( ph -> G e. Word S ) |
3 |
|
ofcccat.3 |
|- ( ph -> K e. T ) |
4 |
|
fconst6g |
|- ( K e. T -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) : ( 0 ..^ ( # ` F ) ) --> T ) |
5 |
|
iswrdi |
|- ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) : ( 0 ..^ ( # ` F ) ) --> T -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) e. Word T ) |
6 |
3 4 5
|
3syl |
|- ( ph -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) e. Word T ) |
7 |
|
fconst6g |
|- ( K e. T -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) : ( 0 ..^ ( # ` G ) ) --> T ) |
8 |
|
iswrdi |
|- ( ( ( 0 ..^ ( # ` G ) ) X. { K } ) : ( 0 ..^ ( # ` G ) ) --> T -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) e. Word T ) |
9 |
3 7 8
|
3syl |
|- ( ph -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) e. Word T ) |
10 |
|
fzofi |
|- ( 0 ..^ ( # ` F ) ) e. Fin |
11 |
|
snfi |
|- { K } e. Fin |
12 |
|
hashxp |
|- ( ( ( 0 ..^ ( # ` F ) ) e. Fin /\ { K } e. Fin ) -> ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) ) |
13 |
10 11 12
|
mp2an |
|- ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) |
14 |
|
lencl |
|- ( F e. Word S -> ( # ` F ) e. NN0 ) |
15 |
|
hashfzo0 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
16 |
1 14 15
|
3syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
17 |
|
hashsng |
|- ( K e. T -> ( # ` { K } ) = 1 ) |
18 |
3 17
|
syl |
|- ( ph -> ( # ` { K } ) = 1 ) |
19 |
16 18
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) = ( ( # ` F ) x. 1 ) ) |
20 |
1 14
|
syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
21 |
20
|
nn0cnd |
|- ( ph -> ( # ` F ) e. CC ) |
22 |
21
|
mulid1d |
|- ( ph -> ( ( # ` F ) x. 1 ) = ( # ` F ) ) |
23 |
19 22
|
eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) = ( # ` F ) ) |
24 |
13 23
|
eqtr2id |
|- ( ph -> ( # ` F ) = ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ) |
25 |
|
fzofi |
|- ( 0 ..^ ( # ` G ) ) e. Fin |
26 |
|
hashxp |
|- ( ( ( 0 ..^ ( # ` G ) ) e. Fin /\ { K } e. Fin ) -> ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) ) |
27 |
25 11 26
|
mp2an |
|- ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) |
28 |
|
lencl |
|- ( G e. Word S -> ( # ` G ) e. NN0 ) |
29 |
|
hashfzo0 |
|- ( ( # ` G ) e. NN0 -> ( # ` ( 0 ..^ ( # ` G ) ) ) = ( # ` G ) ) |
30 |
2 28 29
|
3syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` G ) ) ) = ( # ` G ) ) |
31 |
30 18
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) = ( ( # ` G ) x. 1 ) ) |
32 |
2 28
|
syl |
|- ( ph -> ( # ` G ) e. NN0 ) |
33 |
32
|
nn0cnd |
|- ( ph -> ( # ` G ) e. CC ) |
34 |
33
|
mulid1d |
|- ( ph -> ( ( # ` G ) x. 1 ) = ( # ` G ) ) |
35 |
31 34
|
eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) = ( # ` G ) ) |
36 |
27 35
|
eqtr2id |
|- ( ph -> ( # ` G ) = ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
37 |
1 2 6 9 24 36
|
ofccat |
|- ( ph -> ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) = ( ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ++ ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
38 |
|
ccatcl |
|- ( ( F e. Word S /\ G e. Word S ) -> ( F ++ G ) e. Word S ) |
39 |
1 2 38
|
syl2anc |
|- ( ph -> ( F ++ G ) e. Word S ) |
40 |
|
wrdf |
|- ( ( F ++ G ) e. Word S -> ( F ++ G ) : ( 0 ..^ ( # ` ( F ++ G ) ) ) --> S ) |
41 |
39 40
|
syl |
|- ( ph -> ( F ++ G ) : ( 0 ..^ ( # ` ( F ++ G ) ) ) --> S ) |
42 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` ( F ++ G ) ) ) e. _V ) |
43 |
41 42 3
|
ofcof |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F ++ G ) oF R ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) ) ) |
44 |
|
eqid |
|- ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) |
45 |
|
ccatlen |
|- ( ( F e. Word S /\ G e. Word S ) -> ( # ` ( F ++ G ) ) = ( ( # ` F ) + ( # ` G ) ) ) |
46 |
1 2 45
|
syl2anc |
|- ( ph -> ( # ` ( F ++ G ) ) = ( ( # ` F ) + ( # ` G ) ) ) |
47 |
46
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( F ++ G ) ) ) = ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) ) |
48 |
47
|
xpeq1d |
|- ( ph -> ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) ) |
49 |
|
eqid |
|- ( ( 0 ..^ ( # ` F ) ) X. { K } ) = ( ( 0 ..^ ( # ` F ) ) X. { K } ) |
50 |
|
eqid |
|- ( ( 0 ..^ ( # ` G ) ) X. { K } ) = ( ( 0 ..^ ( # ` G ) ) X. { K } ) |
51 |
49 50 44 3 20 32
|
ccatmulgnn0dir |
|- ( ph -> ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) ) |
52 |
44 48 51
|
3eqtr4a |
|- ( ph -> ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) = ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
53 |
52
|
oveq2d |
|- ( ph -> ( ( F ++ G ) oF R ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) ) = ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
54 |
43 53
|
eqtrd |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
55 |
|
wrdf |
|- ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
56 |
1 55
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
57 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` F ) ) e. _V ) |
58 |
56 57 3
|
ofcof |
|- ( ph -> ( F oFC R K ) = ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ) |
59 |
|
wrdf |
|- ( G e. Word S -> G : ( 0 ..^ ( # ` G ) ) --> S ) |
60 |
2 59
|
syl |
|- ( ph -> G : ( 0 ..^ ( # ` G ) ) --> S ) |
61 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` G ) ) e. _V ) |
62 |
60 61 3
|
ofcof |
|- ( ph -> ( G oFC R K ) = ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
63 |
58 62
|
oveq12d |
|- ( ph -> ( ( F oFC R K ) ++ ( G oFC R K ) ) = ( ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ++ ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
64 |
37 54 63
|
3eqtr4d |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F oFC R K ) ++ ( G oFC R K ) ) ) |