| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofcccat.1 |
|- ( ph -> F e. Word S ) |
| 2 |
|
ofcccat.2 |
|- ( ph -> G e. Word S ) |
| 3 |
|
ofcccat.3 |
|- ( ph -> K e. T ) |
| 4 |
|
fconst6g |
|- ( K e. T -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) : ( 0 ..^ ( # ` F ) ) --> T ) |
| 5 |
|
iswrdi |
|- ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) : ( 0 ..^ ( # ` F ) ) --> T -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) e. Word T ) |
| 6 |
3 4 5
|
3syl |
|- ( ph -> ( ( 0 ..^ ( # ` F ) ) X. { K } ) e. Word T ) |
| 7 |
|
fconst6g |
|- ( K e. T -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) : ( 0 ..^ ( # ` G ) ) --> T ) |
| 8 |
|
iswrdi |
|- ( ( ( 0 ..^ ( # ` G ) ) X. { K } ) : ( 0 ..^ ( # ` G ) ) --> T -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) e. Word T ) |
| 9 |
3 7 8
|
3syl |
|- ( ph -> ( ( 0 ..^ ( # ` G ) ) X. { K } ) e. Word T ) |
| 10 |
|
fzofi |
|- ( 0 ..^ ( # ` F ) ) e. Fin |
| 11 |
|
snfi |
|- { K } e. Fin |
| 12 |
|
hashxp |
|- ( ( ( 0 ..^ ( # ` F ) ) e. Fin /\ { K } e. Fin ) -> ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) ) |
| 13 |
10 11 12
|
mp2an |
|- ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) |
| 14 |
|
lencl |
|- ( F e. Word S -> ( # ` F ) e. NN0 ) |
| 15 |
|
hashfzo0 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
| 16 |
1 14 15
|
3syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
| 17 |
|
hashsng |
|- ( K e. T -> ( # ` { K } ) = 1 ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( # ` { K } ) = 1 ) |
| 19 |
16 18
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) = ( ( # ` F ) x. 1 ) ) |
| 20 |
1 14
|
syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
| 21 |
20
|
nn0cnd |
|- ( ph -> ( # ` F ) e. CC ) |
| 22 |
21
|
mulridd |
|- ( ph -> ( ( # ` F ) x. 1 ) = ( # ` F ) ) |
| 23 |
19 22
|
eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` F ) ) ) x. ( # ` { K } ) ) = ( # ` F ) ) |
| 24 |
13 23
|
eqtr2id |
|- ( ph -> ( # ` F ) = ( # ` ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ) |
| 25 |
|
fzofi |
|- ( 0 ..^ ( # ` G ) ) e. Fin |
| 26 |
|
hashxp |
|- ( ( ( 0 ..^ ( # ` G ) ) e. Fin /\ { K } e. Fin ) -> ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) ) |
| 27 |
25 11 26
|
mp2an |
|- ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) |
| 28 |
|
lencl |
|- ( G e. Word S -> ( # ` G ) e. NN0 ) |
| 29 |
|
hashfzo0 |
|- ( ( # ` G ) e. NN0 -> ( # ` ( 0 ..^ ( # ` G ) ) ) = ( # ` G ) ) |
| 30 |
2 28 29
|
3syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` G ) ) ) = ( # ` G ) ) |
| 31 |
30 18
|
oveq12d |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) = ( ( # ` G ) x. 1 ) ) |
| 32 |
2 28
|
syl |
|- ( ph -> ( # ` G ) e. NN0 ) |
| 33 |
32
|
nn0cnd |
|- ( ph -> ( # ` G ) e. CC ) |
| 34 |
33
|
mulridd |
|- ( ph -> ( ( # ` G ) x. 1 ) = ( # ` G ) ) |
| 35 |
31 34
|
eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ ( # ` G ) ) ) x. ( # ` { K } ) ) = ( # ` G ) ) |
| 36 |
27 35
|
eqtr2id |
|- ( ph -> ( # ` G ) = ( # ` ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
| 37 |
1 2 6 9 24 36
|
ofccat |
|- ( ph -> ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) = ( ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ++ ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
| 38 |
|
ccatcl |
|- ( ( F e. Word S /\ G e. Word S ) -> ( F ++ G ) e. Word S ) |
| 39 |
1 2 38
|
syl2anc |
|- ( ph -> ( F ++ G ) e. Word S ) |
| 40 |
|
wrdf |
|- ( ( F ++ G ) e. Word S -> ( F ++ G ) : ( 0 ..^ ( # ` ( F ++ G ) ) ) --> S ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( F ++ G ) : ( 0 ..^ ( # ` ( F ++ G ) ) ) --> S ) |
| 42 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` ( F ++ G ) ) ) e. _V ) |
| 43 |
41 42 3
|
ofcof |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F ++ G ) oF R ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) ) ) |
| 44 |
|
eqid |
|- ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) |
| 45 |
|
ccatlen |
|- ( ( F e. Word S /\ G e. Word S ) -> ( # ` ( F ++ G ) ) = ( ( # ` F ) + ( # ` G ) ) ) |
| 46 |
1 2 45
|
syl2anc |
|- ( ph -> ( # ` ( F ++ G ) ) = ( ( # ` F ) + ( # ` G ) ) ) |
| 47 |
46
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( F ++ G ) ) ) = ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) ) |
| 48 |
47
|
xpeq1d |
|- ( ph -> ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) ) |
| 49 |
|
eqid |
|- ( ( 0 ..^ ( # ` F ) ) X. { K } ) = ( ( 0 ..^ ( # ` F ) ) X. { K } ) |
| 50 |
|
eqid |
|- ( ( 0 ..^ ( # ` G ) ) X. { K } ) = ( ( 0 ..^ ( # ` G ) ) X. { K } ) |
| 51 |
49 50 44 3 20 32
|
ccatmulgnn0dir |
|- ( ph -> ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) = ( ( 0 ..^ ( ( # ` F ) + ( # ` G ) ) ) X. { K } ) ) |
| 52 |
44 48 51
|
3eqtr4a |
|- ( ph -> ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) = ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ph -> ( ( F ++ G ) oF R ( ( 0 ..^ ( # ` ( F ++ G ) ) ) X. { K } ) ) = ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
| 54 |
43 53
|
eqtrd |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F ++ G ) oF R ( ( ( 0 ..^ ( # ` F ) ) X. { K } ) ++ ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
| 55 |
|
wrdf |
|- ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
| 56 |
1 55
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
| 57 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` F ) ) e. _V ) |
| 58 |
56 57 3
|
ofcof |
|- ( ph -> ( F oFC R K ) = ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ) |
| 59 |
|
wrdf |
|- ( G e. Word S -> G : ( 0 ..^ ( # ` G ) ) --> S ) |
| 60 |
2 59
|
syl |
|- ( ph -> G : ( 0 ..^ ( # ` G ) ) --> S ) |
| 61 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` G ) ) e. _V ) |
| 62 |
60 61 3
|
ofcof |
|- ( ph -> ( G oFC R K ) = ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) |
| 63 |
58 62
|
oveq12d |
|- ( ph -> ( ( F oFC R K ) ++ ( G oFC R K ) ) = ( ( F oF R ( ( 0 ..^ ( # ` F ) ) X. { K } ) ) ++ ( G oF R ( ( 0 ..^ ( # ` G ) ) X. { K } ) ) ) ) |
| 64 |
37 54 63
|
3eqtr4d |
|- ( ph -> ( ( F ++ G ) oFC R K ) = ( ( F oFC R K ) ++ ( G oFC R K ) ) ) |