Step |
Hyp |
Ref |
Expression |
1 |
|
ofcccat.1 |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝑆 ) |
2 |
|
ofcccat.2 |
⊢ ( 𝜑 → 𝐺 ∈ Word 𝑆 ) |
3 |
|
ofcccat.3 |
⊢ ( 𝜑 → 𝐾 ∈ 𝑇 ) |
4 |
|
fconst6g |
⊢ ( 𝐾 ∈ 𝑇 → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑇 ) |
5 |
|
iswrdi |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑇 → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ∈ Word 𝑇 ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ∈ Word 𝑇 ) |
7 |
|
fconst6g |
⊢ ( 𝐾 ∈ 𝑇 → ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 ) |
8 |
|
iswrdi |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 → ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ∈ Word 𝑇 ) |
9 |
3 7 8
|
3syl |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ∈ Word 𝑇 ) |
10 |
|
fzofi |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin |
11 |
|
snfi |
⊢ { 𝐾 } ∈ Fin |
12 |
|
hashxp |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin ∧ { 𝐾 } ∈ Fin ) → ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) = ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) = ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) |
14 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
15 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
16 |
1 14 15
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
17 |
|
hashsng |
⊢ ( 𝐾 ∈ 𝑇 → ( ♯ ‘ { 𝐾 } ) = 1 ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐾 } ) = 1 ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) = ( ( ♯ ‘ 𝐹 ) · 1 ) ) |
20 |
1 14
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
21 |
20
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
22 |
21
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) · 1 ) = ( ♯ ‘ 𝐹 ) ) |
23 |
19 22
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) = ( ♯ ‘ 𝐹 ) ) |
24 |
13 23
|
eqtr2id |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) ) |
25 |
|
fzofi |
⊢ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ∈ Fin |
26 |
|
hashxp |
⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ∈ Fin ∧ { 𝐾 } ∈ Fin ) → ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) = ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) ) |
27 |
25 11 26
|
mp2an |
⊢ ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) = ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) |
28 |
|
lencl |
⊢ ( 𝐺 ∈ Word 𝑆 → ( ♯ ‘ 𝐺 ) ∈ ℕ0 ) |
29 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝐺 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) = ( ♯ ‘ 𝐺 ) ) |
30 |
2 28 29
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) = ( ♯ ‘ 𝐺 ) ) |
31 |
30 18
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) = ( ( ♯ ‘ 𝐺 ) · 1 ) ) |
32 |
2 28
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐺 ) ∈ ℕ0 ) |
33 |
32
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐺 ) ∈ ℂ ) |
34 |
33
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐺 ) · 1 ) = ( ♯ ‘ 𝐺 ) ) |
35 |
31 34
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) · ( ♯ ‘ { 𝐾 } ) ) = ( ♯ ‘ 𝐺 ) ) |
36 |
27 35
|
eqtr2id |
⊢ ( 𝜑 → ( ♯ ‘ 𝐺 ) = ( ♯ ‘ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) |
37 |
1 2 6 9 24 36
|
ofccat |
⊢ ( 𝜑 → ( ( 𝐹 ++ 𝐺 ) ∘f 𝑅 ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ++ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) = ( ( 𝐹 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) ++ ( 𝐺 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) ) |
38 |
|
ccatcl |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐺 ∈ Word 𝑆 ) → ( 𝐹 ++ 𝐺 ) ∈ Word 𝑆 ) |
39 |
1 2 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ++ 𝐺 ) ∈ Word 𝑆 ) |
40 |
|
wrdf |
⊢ ( ( 𝐹 ++ 𝐺 ) ∈ Word 𝑆 → ( 𝐹 ++ 𝐺 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) ⟶ 𝑆 ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( 𝐹 ++ 𝐺 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) ⟶ 𝑆 ) |
42 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) ∈ V ) |
43 |
41 42 3
|
ofcof |
⊢ ( 𝜑 → ( ( 𝐹 ++ 𝐺 ) ∘f/c 𝑅 𝐾 ) = ( ( 𝐹 ++ 𝐺 ) ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) × { 𝐾 } ) ) ) |
44 |
|
eqid |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) × { 𝐾 } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) × { 𝐾 } ) |
45 |
|
ccatlen |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐺 ∈ Word 𝑆 ) → ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) |
46 |
1 2 45
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) ) |
48 |
47
|
xpeq1d |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) × { 𝐾 } ) = ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) × { 𝐾 } ) ) |
49 |
|
eqid |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) = ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) |
50 |
|
eqid |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) = ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) |
51 |
49 50 44 3 20 32
|
ccatmulgnn0dir |
⊢ ( 𝜑 → ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ++ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) = ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 𝐺 ) ) ) × { 𝐾 } ) ) |
52 |
44 48 51
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) × { 𝐾 } ) = ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ++ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) |
53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ++ 𝐺 ) ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 𝐺 ) ) ) × { 𝐾 } ) ) = ( ( 𝐹 ++ 𝐺 ) ∘f 𝑅 ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ++ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) ) |
54 |
43 53
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ++ 𝐺 ) ∘f/c 𝑅 𝐾 ) = ( ( 𝐹 ++ 𝐺 ) ∘f 𝑅 ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ++ ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) ) |
55 |
|
wrdf |
⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) |
56 |
1 55
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) |
57 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ) |
58 |
56 57 3
|
ofcof |
⊢ ( 𝜑 → ( 𝐹 ∘f/c 𝑅 𝐾 ) = ( 𝐹 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) ) |
59 |
|
wrdf |
⊢ ( 𝐺 ∈ Word 𝑆 → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑆 ) |
60 |
2 59
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑆 ) |
61 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ∈ V ) |
62 |
60 61 3
|
ofcof |
⊢ ( 𝜑 → ( 𝐺 ∘f/c 𝑅 𝐾 ) = ( 𝐺 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) |
63 |
58 62
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f/c 𝑅 𝐾 ) ++ ( 𝐺 ∘f/c 𝑅 𝐾 ) ) = ( ( 𝐹 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) × { 𝐾 } ) ) ++ ( 𝐺 ∘f 𝑅 ( ( 0 ..^ ( ♯ ‘ 𝐺 ) ) × { 𝐾 } ) ) ) ) |
64 |
37 54 63
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ++ 𝐺 ) ∘f/c 𝑅 𝐾 ) = ( ( 𝐹 ∘f/c 𝑅 𝐾 ) ++ ( 𝐺 ∘f/c 𝑅 𝐾 ) ) ) |