Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> A e. V ) |
2 |
|
simplr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> F : A --> CC ) |
3 |
2
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> F Fn A ) |
4 |
|
simprl |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> G : A --> CC ) |
5 |
4
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> G Fn A ) |
6 |
|
simprr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> H : A --> CC ) |
7 |
6
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> H Fn A ) |
8 |
|
inidm |
|- ( A i^i A ) = A |
9 |
5 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( G oF x. H ) Fn A ) |
10 |
3 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( F oF x. H ) Fn A ) |
11 |
5 10 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( G oF x. ( F oF x. H ) ) Fn A ) |
12 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
13 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
14 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( H ` x ) = ( H ` x ) ) |
15 |
5 7 1 1 8 13 14
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( G oF x. H ) ` x ) = ( ( G ` x ) x. ( H ` x ) ) ) |
16 |
2
|
ffvelrnda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
17 |
4
|
ffvelrnda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( G ` x ) e. CC ) |
18 |
6
|
ffvelrnda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( H ` x ) e. CC ) |
19 |
16 17 18
|
mul12d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F ` x ) x. ( ( G ` x ) x. ( H ` x ) ) ) = ( ( G ` x ) x. ( ( F ` x ) x. ( H ` x ) ) ) ) |
20 |
3 7 1 1 8 12 14
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F oF x. H ) ` x ) = ( ( F ` x ) x. ( H ` x ) ) ) |
21 |
5 10 1 1 8 13 20
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( G oF x. ( F oF x. H ) ) ` x ) = ( ( G ` x ) x. ( ( F ` x ) x. ( H ` x ) ) ) ) |
22 |
19 21
|
eqtr4d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F ` x ) x. ( ( G ` x ) x. ( H ` x ) ) ) = ( ( G oF x. ( F oF x. H ) ) ` x ) ) |
23 |
1 3 9 11 12 15 22
|
offveq |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( F oF x. ( G oF x. H ) ) = ( G oF x. ( F oF x. H ) ) ) |