| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> A e. V ) |
| 2 |
|
simplr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> F : A --> CC ) |
| 3 |
2
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> F Fn A ) |
| 4 |
|
simprl |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> G : A --> CC ) |
| 5 |
4
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> G Fn A ) |
| 6 |
|
simprr |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> H : A --> CC ) |
| 7 |
6
|
ffnd |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> H Fn A ) |
| 8 |
|
inidm |
|- ( A i^i A ) = A |
| 9 |
5 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( G oF x. H ) Fn A ) |
| 10 |
3 7 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( F oF x. H ) Fn A ) |
| 11 |
5 10 1 1 8
|
offn |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( G oF x. ( F oF x. H ) ) Fn A ) |
| 12 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 13 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
| 14 |
|
eqidd |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( H ` x ) = ( H ` x ) ) |
| 15 |
5 7 1 1 8 13 14
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( G oF x. H ) ` x ) = ( ( G ` x ) x. ( H ` x ) ) ) |
| 16 |
2
|
ffvelcdmda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 17 |
4
|
ffvelcdmda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( G ` x ) e. CC ) |
| 18 |
6
|
ffvelcdmda |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( H ` x ) e. CC ) |
| 19 |
16 17 18
|
mul12d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F ` x ) x. ( ( G ` x ) x. ( H ` x ) ) ) = ( ( G ` x ) x. ( ( F ` x ) x. ( H ` x ) ) ) ) |
| 20 |
3 7 1 1 8 12 14
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F oF x. H ) ` x ) = ( ( F ` x ) x. ( H ` x ) ) ) |
| 21 |
5 10 1 1 8 13 20
|
ofval |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( G oF x. ( F oF x. H ) ) ` x ) = ( ( G ` x ) x. ( ( F ` x ) x. ( H ` x ) ) ) ) |
| 22 |
19 21
|
eqtr4d |
|- ( ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) /\ x e. A ) -> ( ( F ` x ) x. ( ( G ` x ) x. ( H ` x ) ) ) = ( ( G oF x. ( F oF x. H ) ) ` x ) ) |
| 23 |
1 3 9 11 12 15 22
|
offveq |
|- ( ( ( A e. V /\ F : A --> CC ) /\ ( G : A --> CC /\ H : A --> CC ) ) -> ( F oF x. ( G oF x. H ) ) = ( G oF x. ( F oF x. H ) ) ) |