Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> A e. V ) |
2 |
|
simp2 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> F : A --> CC ) |
3 |
2
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> F Fn A ) |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
|
fnconstg |
|- ( 1 e. CC -> ( A X. { 1 } ) Fn A ) |
6 |
4 5
|
mp1i |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( A X. { 1 } ) Fn A ) |
7 |
|
simp3 |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> G : A --> ( CC \ { 0 } ) ) |
8 |
7
|
ffnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> G Fn A ) |
9 |
|
inidm |
|- ( A i^i A ) = A |
10 |
6 8 1 1 9
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( ( A X. { 1 } ) oF / G ) Fn A ) |
11 |
3 8 1 1 9
|
offn |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( F oF / G ) Fn A ) |
12 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
13 |
|
1cnd |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> 1 e. CC ) |
14 |
|
eqidd |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
15 |
1 13 8 14
|
ofc1 |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( ( A X. { 1 } ) oF / G ) ` x ) = ( 1 / ( G ` x ) ) ) |
16 |
|
ffvelrn |
|- ( ( F : A --> CC /\ x e. A ) -> ( F ` x ) e. CC ) |
17 |
2 16
|
sylan |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( F ` x ) e. CC ) |
18 |
|
ffvelrn |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
19 |
|
eldifsn |
|- ( ( G ` x ) e. ( CC \ { 0 } ) <-> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
20 |
18 19
|
sylib |
|- ( ( G : A --> ( CC \ { 0 } ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
21 |
7 20
|
sylan |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) |
22 |
|
divrec |
|- ( ( ( F ` x ) e. CC /\ ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` x ) x. ( 1 / ( G ` x ) ) ) ) |
23 |
22
|
eqcomd |
|- ( ( ( F ` x ) e. CC /\ ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) -> ( ( F ` x ) x. ( 1 / ( G ` x ) ) ) = ( ( F ` x ) / ( G ` x ) ) ) |
24 |
23
|
3expb |
|- ( ( ( F ` x ) e. CC /\ ( ( G ` x ) e. CC /\ ( G ` x ) =/= 0 ) ) -> ( ( F ` x ) x. ( 1 / ( G ` x ) ) ) = ( ( F ` x ) / ( G ` x ) ) ) |
25 |
17 21 24
|
syl2anc |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( F ` x ) x. ( 1 / ( G ` x ) ) ) = ( ( F ` x ) / ( G ` x ) ) ) |
26 |
3 8 1 1 9 12 14
|
ofval |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( F oF / G ) ` x ) = ( ( F ` x ) / ( G ` x ) ) ) |
27 |
25 26
|
eqtr4d |
|- ( ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) /\ x e. A ) -> ( ( F ` x ) x. ( 1 / ( G ` x ) ) ) = ( ( F oF / G ) ` x ) ) |
28 |
1 3 10 11 12 15 27
|
offveq |
|- ( ( A e. V /\ F : A --> CC /\ G : A --> ( CC \ { 0 } ) ) -> ( F oF x. ( ( A X. { 1 } ) oF / G ) ) = ( F oF / G ) ) |