Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ 𝑉 ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
2
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐹 Fn 𝐴 ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
|
fnconstg |
⊢ ( 1 ∈ ℂ → ( 𝐴 × { 1 } ) Fn 𝐴 ) |
6 |
4 5
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( 𝐴 × { 1 } ) Fn 𝐴 ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
8 |
7
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 𝐺 Fn 𝐴 ) |
9 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
10 |
6 8 1 1 9
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( ( 𝐴 × { 1 } ) ∘f / 𝐺 ) Fn 𝐴 ) |
11 |
3 8 1 1 9
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ∘f / 𝐺 ) Fn 𝐴 ) |
12 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
13 |
|
1cnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → 1 ∈ ℂ ) |
14 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
15 |
1 13 8 14
|
ofc1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐴 × { 1 } ) ∘f / 𝐺 ) ‘ 𝑥 ) = ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) |
16 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
17 |
2 16
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
18 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
19 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
20 |
18 19
|
sylib |
⊢ ( ( 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
21 |
7 20
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) |
22 |
|
divrec |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) ) |
23 |
22
|
eqcomd |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
24 |
23
|
3expb |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑥 ) ≠ 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
25 |
17 21 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
26 |
3 8 1 1 9 12 14
|
ofval |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f / 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
27 |
25 26
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1 / ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐹 ∘f / 𝐺 ) ‘ 𝑥 ) ) |
28 |
1 3 10 11 12 15 27
|
offveq |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ∘f · ( ( 𝐴 × { 1 } ) ∘f / 𝐺 ) ) = ( 𝐹 ∘f / 𝐺 ) ) |