| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofoprabco.1 |
|- F/_ a M |
| 2 |
|
ofoprabco.2 |
|- ( ph -> F : A --> B ) |
| 3 |
|
ofoprabco.3 |
|- ( ph -> G : A --> C ) |
| 4 |
|
ofoprabco.4 |
|- ( ph -> A e. V ) |
| 5 |
|
ofoprabco.5 |
|- ( ph -> M = ( a e. A |-> <. ( F ` a ) , ( G ` a ) >. ) ) |
| 6 |
|
ofoprabco.6 |
|- ( ph -> N = ( x e. B , y e. C |-> ( x R y ) ) ) |
| 7 |
2
|
ffvelcdmda |
|- ( ( ph /\ a e. A ) -> ( F ` a ) e. B ) |
| 8 |
3
|
ffvelcdmda |
|- ( ( ph /\ a e. A ) -> ( G ` a ) e. C ) |
| 9 |
|
opelxpi |
|- ( ( ( F ` a ) e. B /\ ( G ` a ) e. C ) -> <. ( F ` a ) , ( G ` a ) >. e. ( B X. C ) ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( ph /\ a e. A ) -> <. ( F ` a ) , ( G ` a ) >. e. ( B X. C ) ) |
| 11 |
5 10
|
fvmpt2d |
|- ( ( ph /\ a e. A ) -> ( M ` a ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ a e. A ) -> ( N ` ( M ` a ) ) = ( N ` <. ( F ` a ) , ( G ` a ) >. ) ) |
| 13 |
|
df-ov |
|- ( ( F ` a ) N ( G ` a ) ) = ( N ` <. ( F ` a ) , ( G ` a ) >. ) |
| 14 |
13
|
a1i |
|- ( ( ph /\ a e. A ) -> ( ( F ` a ) N ( G ` a ) ) = ( N ` <. ( F ` a ) , ( G ` a ) >. ) ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ a e. A ) -> N = ( x e. B , y e. C |-> ( x R y ) ) ) |
| 16 |
|
simprl |
|- ( ( ( ph /\ a e. A ) /\ ( x = ( F ` a ) /\ y = ( G ` a ) ) ) -> x = ( F ` a ) ) |
| 17 |
|
simprr |
|- ( ( ( ph /\ a e. A ) /\ ( x = ( F ` a ) /\ y = ( G ` a ) ) ) -> y = ( G ` a ) ) |
| 18 |
16 17
|
oveq12d |
|- ( ( ( ph /\ a e. A ) /\ ( x = ( F ` a ) /\ y = ( G ` a ) ) ) -> ( x R y ) = ( ( F ` a ) R ( G ` a ) ) ) |
| 19 |
|
ovexd |
|- ( ( ph /\ a e. A ) -> ( ( F ` a ) R ( G ` a ) ) e. _V ) |
| 20 |
15 18 7 8 19
|
ovmpod |
|- ( ( ph /\ a e. A ) -> ( ( F ` a ) N ( G ` a ) ) = ( ( F ` a ) R ( G ` a ) ) ) |
| 21 |
12 14 20
|
3eqtr2d |
|- ( ( ph /\ a e. A ) -> ( N ` ( M ` a ) ) = ( ( F ` a ) R ( G ` a ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( ph -> ( a e. A |-> ( N ` ( M ` a ) ) ) = ( a e. A |-> ( ( F ` a ) R ( G ` a ) ) ) ) |
| 23 |
|
ovex |
|- ( x R y ) e. _V |
| 24 |
23
|
rgen2w |
|- A. x e. B A. y e. C ( x R y ) e. _V |
| 25 |
|
eqid |
|- ( x e. B , y e. C |-> ( x R y ) ) = ( x e. B , y e. C |-> ( x R y ) ) |
| 26 |
25
|
fmpo |
|- ( A. x e. B A. y e. C ( x R y ) e. _V <-> ( x e. B , y e. C |-> ( x R y ) ) : ( B X. C ) --> _V ) |
| 27 |
24 26
|
mpbi |
|- ( x e. B , y e. C |-> ( x R y ) ) : ( B X. C ) --> _V |
| 28 |
6
|
feq1d |
|- ( ph -> ( N : ( B X. C ) --> _V <-> ( x e. B , y e. C |-> ( x R y ) ) : ( B X. C ) --> _V ) ) |
| 29 |
27 28
|
mpbiri |
|- ( ph -> N : ( B X. C ) --> _V ) |
| 30 |
5 10
|
fmpt3d |
|- ( ph -> M : A --> ( B X. C ) ) |
| 31 |
1
|
fcomptf |
|- ( ( N : ( B X. C ) --> _V /\ M : A --> ( B X. C ) ) -> ( N o. M ) = ( a e. A |-> ( N ` ( M ` a ) ) ) ) |
| 32 |
29 30 31
|
syl2anc |
|- ( ph -> ( N o. M ) = ( a e. A |-> ( N ` ( M ` a ) ) ) ) |
| 33 |
2
|
feqmptd |
|- ( ph -> F = ( a e. A |-> ( F ` a ) ) ) |
| 34 |
3
|
feqmptd |
|- ( ph -> G = ( a e. A |-> ( G ` a ) ) ) |
| 35 |
4 7 8 33 34
|
offval2 |
|- ( ph -> ( F oF R G ) = ( a e. A |-> ( ( F ` a ) R ( G ` a ) ) ) ) |
| 36 |
22 32 35
|
3eqtr4rd |
|- ( ph -> ( F oF R G ) = ( N o. M ) ) |