| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofpreima.1 |
|- ( ph -> F : A --> B ) |
| 2 |
|
ofpreima.2 |
|- ( ph -> G : A --> C ) |
| 3 |
|
ofpreima.3 |
|- ( ph -> A e. V ) |
| 4 |
|
ofpreima.4 |
|- ( ph -> R Fn ( B X. C ) ) |
| 5 |
|
nfmpt1 |
|- F/_ s ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) |
| 6 |
|
eqidd |
|- ( ph -> ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) = ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ) |
| 7 |
|
fnov |
|- ( R Fn ( B X. C ) <-> R = ( x e. B , y e. C |-> ( x R y ) ) ) |
| 8 |
4 7
|
sylib |
|- ( ph -> R = ( x e. B , y e. C |-> ( x R y ) ) ) |
| 9 |
5 1 2 3 6 8
|
ofoprabco |
|- ( ph -> ( F oF R G ) = ( R o. ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ) ) |
| 10 |
9
|
cnveqd |
|- ( ph -> `' ( F oF R G ) = `' ( R o. ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ) ) |
| 11 |
|
cnvco |
|- `' ( R o. ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ) = ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) o. `' R ) |
| 12 |
10 11
|
eqtrdi |
|- ( ph -> `' ( F oF R G ) = ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) o. `' R ) ) |
| 13 |
12
|
imaeq1d |
|- ( ph -> ( `' ( F oF R G ) " D ) = ( ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) o. `' R ) " D ) ) |
| 14 |
|
imaco |
|- ( ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) o. `' R ) " D ) = ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) " ( `' R " D ) ) |
| 15 |
13 14
|
eqtrdi |
|- ( ph -> ( `' ( F oF R G ) " D ) = ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) " ( `' R " D ) ) ) |
| 16 |
|
dfima2 |
|- ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) " ( `' R " D ) ) = { q | E. p e. ( `' R " D ) p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q } |
| 17 |
|
vex |
|- p e. _V |
| 18 |
|
vex |
|- q e. _V |
| 19 |
17 18
|
brcnv |
|- ( p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q <-> q ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) p ) |
| 20 |
|
funmpt |
|- Fun ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) |
| 21 |
|
funbrfv2b |
|- ( Fun ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) -> ( q ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) p <-> ( q e. dom ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) ) ) |
| 22 |
20 21
|
ax-mp |
|- ( q ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) p <-> ( q e. dom ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) ) |
| 23 |
|
opex |
|- <. ( F ` s ) , ( G ` s ) >. e. _V |
| 24 |
|
eqid |
|- ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) = ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) |
| 25 |
23 24
|
dmmpti |
|- dom ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) = A |
| 26 |
25
|
eleq2i |
|- ( q e. dom ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) <-> q e. A ) |
| 27 |
26
|
anbi1i |
|- ( ( q e. dom ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) <-> ( q e. A /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) ) |
| 28 |
22 27
|
bitri |
|- ( q ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) p <-> ( q e. A /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) ) |
| 29 |
|
fveq2 |
|- ( s = q -> ( F ` s ) = ( F ` q ) ) |
| 30 |
|
fveq2 |
|- ( s = q -> ( G ` s ) = ( G ` q ) ) |
| 31 |
29 30
|
opeq12d |
|- ( s = q -> <. ( F ` s ) , ( G ` s ) >. = <. ( F ` q ) , ( G ` q ) >. ) |
| 32 |
|
opex |
|- <. ( F ` q ) , ( G ` q ) >. e. _V |
| 33 |
31 24 32
|
fvmpt |
|- ( q e. A -> ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = <. ( F ` q ) , ( G ` q ) >. ) |
| 34 |
33
|
eqeq1d |
|- ( q e. A -> ( ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p <-> <. ( F ` q ) , ( G ` q ) >. = p ) ) |
| 35 |
34
|
pm5.32i |
|- ( ( q e. A /\ ( ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) ` q ) = p ) <-> ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) |
| 36 |
19 28 35
|
3bitri |
|- ( p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q <-> ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) |
| 37 |
36
|
rexbii |
|- ( E. p e. ( `' R " D ) p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q <-> E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) |
| 38 |
37
|
abbii |
|- { q | E. p e. ( `' R " D ) p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q } = { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } |
| 39 |
|
nfv |
|- F/ q ph |
| 40 |
|
nfab1 |
|- F/_ q { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } |
| 41 |
|
nfcv |
|- F/_ q U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) |
| 42 |
|
eliun |
|- ( q e. U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> E. p e. ( `' R " D ) q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 43 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 44 |
|
fniniseg |
|- ( F Fn A -> ( q e. ( `' F " { ( 1st ` p ) } ) <-> ( q e. A /\ ( F ` q ) = ( 1st ` p ) ) ) ) |
| 45 |
1 43 44
|
3syl |
|- ( ph -> ( q e. ( `' F " { ( 1st ` p ) } ) <-> ( q e. A /\ ( F ` q ) = ( 1st ` p ) ) ) ) |
| 46 |
|
ffn |
|- ( G : A --> C -> G Fn A ) |
| 47 |
|
fniniseg |
|- ( G Fn A -> ( q e. ( `' G " { ( 2nd ` p ) } ) <-> ( q e. A /\ ( G ` q ) = ( 2nd ` p ) ) ) ) |
| 48 |
2 46 47
|
3syl |
|- ( ph -> ( q e. ( `' G " { ( 2nd ` p ) } ) <-> ( q e. A /\ ( G ` q ) = ( 2nd ` p ) ) ) ) |
| 49 |
45 48
|
anbi12d |
|- ( ph -> ( ( q e. ( `' F " { ( 1st ` p ) } ) /\ q e. ( `' G " { ( 2nd ` p ) } ) ) <-> ( ( q e. A /\ ( F ` q ) = ( 1st ` p ) ) /\ ( q e. A /\ ( G ` q ) = ( 2nd ` p ) ) ) ) ) |
| 50 |
|
elin |
|- ( q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> ( q e. ( `' F " { ( 1st ` p ) } ) /\ q e. ( `' G " { ( 2nd ` p ) } ) ) ) |
| 51 |
|
anandi |
|- ( ( q e. A /\ ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) <-> ( ( q e. A /\ ( F ` q ) = ( 1st ` p ) ) /\ ( q e. A /\ ( G ` q ) = ( 2nd ` p ) ) ) ) |
| 52 |
49 50 51
|
3bitr4g |
|- ( ph -> ( q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> ( q e. A /\ ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ p e. ( `' R " D ) ) -> ( q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> ( q e. A /\ ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) ) ) |
| 54 |
|
cnvimass |
|- ( `' R " D ) C_ dom R |
| 55 |
4
|
fndmd |
|- ( ph -> dom R = ( B X. C ) ) |
| 56 |
54 55
|
sseqtrid |
|- ( ph -> ( `' R " D ) C_ ( B X. C ) ) |
| 57 |
56
|
sselda |
|- ( ( ph /\ p e. ( `' R " D ) ) -> p e. ( B X. C ) ) |
| 58 |
|
1st2nd2 |
|- ( p e. ( B X. C ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 59 |
|
eqeq2 |
|- ( p = <. ( 1st ` p ) , ( 2nd ` p ) >. -> ( <. ( F ` q ) , ( G ` q ) >. = p <-> <. ( F ` q ) , ( G ` q ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) |
| 60 |
57 58 59
|
3syl |
|- ( ( ph /\ p e. ( `' R " D ) ) -> ( <. ( F ` q ) , ( G ` q ) >. = p <-> <. ( F ` q ) , ( G ` q ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) |
| 61 |
|
fvex |
|- ( F ` q ) e. _V |
| 62 |
|
fvex |
|- ( G ` q ) e. _V |
| 63 |
61 62
|
opth |
|- ( <. ( F ` q ) , ( G ` q ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. <-> ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) |
| 64 |
60 63
|
bitrdi |
|- ( ( ph /\ p e. ( `' R " D ) ) -> ( <. ( F ` q ) , ( G ` q ) >. = p <-> ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) ) |
| 65 |
64
|
anbi2d |
|- ( ( ph /\ p e. ( `' R " D ) ) -> ( ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) <-> ( q e. A /\ ( ( F ` q ) = ( 1st ` p ) /\ ( G ` q ) = ( 2nd ` p ) ) ) ) ) |
| 66 |
53 65
|
bitr4d |
|- ( ( ph /\ p e. ( `' R " D ) ) -> ( q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) ) |
| 67 |
66
|
rexbidva |
|- ( ph -> ( E. p e. ( `' R " D ) q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) ) |
| 68 |
|
abid |
|- ( q e. { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } <-> E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) ) |
| 69 |
67 68
|
bitr4di |
|- ( ph -> ( E. p e. ( `' R " D ) q e. ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) <-> q e. { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } ) ) |
| 70 |
42 69
|
bitr2id |
|- ( ph -> ( q e. { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } <-> q e. U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 71 |
39 40 41 70
|
eqrd |
|- ( ph -> { q | E. p e. ( `' R " D ) ( q e. A /\ <. ( F ` q ) , ( G ` q ) >. = p ) } = U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 72 |
38 71
|
eqtrid |
|- ( ph -> { q | E. p e. ( `' R " D ) p `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) q } = U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 73 |
16 72
|
eqtrid |
|- ( ph -> ( `' ( s e. A |-> <. ( F ` s ) , ( G ` s ) >. ) " ( `' R " D ) ) = U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 74 |
15 73
|
eqtrd |
|- ( ph -> ( `' ( F oF R G ) " D ) = U_ p e. ( `' R " D ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |