| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofpreima.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
ofpreima.2 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐶 ) |
| 3 |
|
ofpreima.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
ofpreima.4 |
⊢ ( 𝜑 → 𝑅 Fn ( 𝐵 × 𝐶 ) ) |
| 5 |
|
nfmpt1 |
⊢ Ⅎ 𝑠 ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) = ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ) |
| 7 |
|
fnov |
⊢ ( 𝑅 Fn ( 𝐵 × 𝐶 ) ↔ 𝑅 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) ) |
| 8 |
4 7
|
sylib |
⊢ ( 𝜑 → 𝑅 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) ) |
| 9 |
5 1 2 3 6 8
|
ofoprabco |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑅 ∘ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ) ) |
| 10 |
9
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝐹 ∘f 𝑅 𝐺 ) = ◡ ( 𝑅 ∘ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ) ) |
| 11 |
|
cnvco |
⊢ ◡ ( 𝑅 ∘ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ) = ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∘ ◡ 𝑅 ) |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝜑 → ◡ ( 𝐹 ∘f 𝑅 𝐺 ) = ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∘ ◡ 𝑅 ) ) |
| 13 |
12
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f 𝑅 𝐺 ) “ 𝐷 ) = ( ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∘ ◡ 𝑅 ) “ 𝐷 ) ) |
| 14 |
|
imaco |
⊢ ( ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∘ ◡ 𝑅 ) “ 𝐷 ) = ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) “ ( ◡ 𝑅 “ 𝐷 ) ) |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f 𝑅 𝐺 ) “ 𝐷 ) = ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) “ ( ◡ 𝑅 “ 𝐷 ) ) ) |
| 16 |
|
dfima2 |
⊢ ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) “ ( ◡ 𝑅 “ 𝐷 ) ) = { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 } |
| 17 |
|
vex |
⊢ 𝑝 ∈ V |
| 18 |
|
vex |
⊢ 𝑞 ∈ V |
| 19 |
17 18
|
brcnv |
⊢ ( 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 ↔ 𝑞 ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑝 ) |
| 20 |
|
funmpt |
⊢ Fun ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) |
| 21 |
|
funbrfv2b |
⊢ ( Fun ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) → ( 𝑞 ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑝 ↔ ( 𝑞 ∈ dom ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( 𝑞 ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑝 ↔ ( 𝑞 ∈ dom ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ) |
| 23 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ∈ V |
| 24 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) = ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) |
| 25 |
23 24
|
dmmpti |
⊢ dom ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) = 𝐴 |
| 26 |
25
|
eleq2i |
⊢ ( 𝑞 ∈ dom ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ↔ 𝑞 ∈ 𝐴 ) |
| 27 |
26
|
anbi1i |
⊢ ( ( 𝑞 ∈ dom ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ) |
| 28 |
22 27
|
bitri |
⊢ ( 𝑞 ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑝 ↔ ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑠 = 𝑞 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑞 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑠 = 𝑞 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑞 ) ) |
| 31 |
29 30
|
opeq12d |
⊢ ( 𝑠 = 𝑞 → 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 = 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 ) |
| 32 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 ∈ V |
| 33 |
31 24 32
|
fvmpt |
⊢ ( 𝑞 ∈ 𝐴 → ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑞 ∈ 𝐴 → ( ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ↔ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) |
| 35 |
34
|
pm5.32i |
⊢ ( ( 𝑞 ∈ 𝐴 ∧ ( ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) ‘ 𝑞 ) = 𝑝 ) ↔ ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) |
| 36 |
19 28 35
|
3bitri |
⊢ ( 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 ↔ ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) |
| 37 |
36
|
rexbii |
⊢ ( ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 ↔ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) |
| 38 |
37
|
abbii |
⊢ { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 } = { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } |
| 39 |
|
nfv |
⊢ Ⅎ 𝑞 𝜑 |
| 40 |
|
nfab1 |
⊢ Ⅎ 𝑞 { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑞 ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) |
| 42 |
|
eliun |
⊢ ( 𝑞 ∈ ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 43 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 44 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑞 ∈ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ) ) ) |
| 45 |
1 43 44
|
3syl |
⊢ ( 𝜑 → ( 𝑞 ∈ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ) ) ) |
| 46 |
|
ffn |
⊢ ( 𝐺 : 𝐴 ⟶ 𝐶 → 𝐺 Fn 𝐴 ) |
| 47 |
|
fniniseg |
⊢ ( 𝐺 Fn 𝐴 → ( 𝑞 ∈ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) |
| 48 |
2 46 47
|
3syl |
⊢ ( 𝜑 → ( 𝑞 ∈ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) |
| 49 |
45 48
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑞 ∈ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∧ 𝑞 ∈ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ( ( 𝑞 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 50 |
|
elin |
⊢ ( 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ( 𝑞 ∈ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∧ 𝑞 ∈ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 51 |
|
anandi |
⊢ ( ( 𝑞 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ↔ ( ( 𝑞 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) |
| 52 |
49 50 51
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → ( 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 54 |
|
cnvimass |
⊢ ( ◡ 𝑅 “ 𝐷 ) ⊆ dom 𝑅 |
| 55 |
4
|
fndmd |
⊢ ( 𝜑 → dom 𝑅 = ( 𝐵 × 𝐶 ) ) |
| 56 |
54 55
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝑅 “ 𝐷 ) ⊆ ( 𝐵 × 𝐶 ) ) |
| 57 |
56
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → 𝑝 ∈ ( 𝐵 × 𝐶 ) ) |
| 58 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐶 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 59 |
|
eqeq2 |
⊢ ( 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 → ( 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ↔ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) ) |
| 60 |
57 58 59
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → ( 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ↔ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) ) |
| 61 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑞 ) ∈ V |
| 62 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑞 ) ∈ V |
| 63 |
61 62
|
opth |
⊢ ( 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ↔ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) |
| 64 |
60 63
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → ( 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ↔ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) |
| 65 |
64
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → ( ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( ( 𝐹 ‘ 𝑞 ) = ( 1st ‘ 𝑝 ) ∧ ( 𝐺 ‘ 𝑞 ) = ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 66 |
53 65
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ) → ( 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) ) |
| 67 |
66
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) ) |
| 68 |
|
abid |
⊢ ( 𝑞 ∈ { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } ↔ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) ) |
| 69 |
67 68
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑞 ∈ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ↔ 𝑞 ∈ { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } ) ) |
| 70 |
42 69
|
bitr2id |
⊢ ( 𝜑 → ( 𝑞 ∈ { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } ↔ 𝑞 ∈ ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 71 |
39 40 41 70
|
eqrd |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( 𝑞 ∈ 𝐴 ∧ 〈 ( 𝐹 ‘ 𝑞 ) , ( 𝐺 ‘ 𝑞 ) 〉 = 𝑝 ) } = ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 72 |
38 71
|
eqtrid |
⊢ ( 𝜑 → { 𝑞 ∣ ∃ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) 𝑝 ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) 𝑞 } = ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 73 |
16 72
|
eqtrid |
⊢ ( 𝜑 → ( ◡ ( 𝑠 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐺 ‘ 𝑠 ) 〉 ) “ ( ◡ 𝑅 “ 𝐷 ) ) = ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 74 |
15 73
|
eqtrd |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f 𝑅 𝐺 ) “ 𝐷 ) = ∪ 𝑝 ∈ ( ◡ 𝑅 “ 𝐷 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |