| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofoprabco.1 |
⊢ Ⅎ 𝑎 𝑀 |
| 2 |
|
ofoprabco.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
|
ofoprabco.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐶 ) |
| 4 |
|
ofoprabco.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
ofoprabco.5 |
⊢ ( 𝜑 → 𝑀 = ( 𝑎 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ) |
| 6 |
|
ofoprabco.6 |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) ) |
| 7 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ) |
| 8 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ 𝐶 ) |
| 9 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑎 ) ∈ 𝐶 ) → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 11 |
5 10
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑎 ) = 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑀 ‘ 𝑎 ) ) = ( 𝑁 ‘ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ) |
| 13 |
|
df-ov |
⊢ ( ( 𝐹 ‘ 𝑎 ) 𝑁 ( 𝐺 ‘ 𝑎 ) ) = ( 𝑁 ‘ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑁 ( 𝐺 ‘ 𝑎 ) ) = ( 𝑁 ‘ 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐺 ‘ 𝑎 ) 〉 ) ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑎 ) ) ) → 𝑥 = ( 𝐹 ‘ 𝑎 ) ) |
| 17 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑎 ) ) ) → 𝑦 = ( 𝐺 ‘ 𝑎 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑦 = ( 𝐺 ‘ 𝑎 ) ) ) → ( 𝑥 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ) |
| 19 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ∈ V ) |
| 20 |
15 18 7 8 19
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑁 ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ) |
| 21 |
12 14 20
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑀 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ) |
| 22 |
21
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝑀 ‘ 𝑎 ) ) ) = ( 𝑎 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ) ) |
| 23 |
|
ovex |
⊢ ( 𝑥 𝑅 𝑦 ) ∈ V |
| 24 |
23
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ) ∈ V |
| 25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) |
| 26 |
25
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐶 ( 𝑥 𝑅 𝑦 ) ∈ V ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) : ( 𝐵 × 𝐶 ) ⟶ V ) |
| 27 |
24 26
|
mpbi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) : ( 𝐵 × 𝐶 ) ⟶ V |
| 28 |
6
|
feq1d |
⊢ ( 𝜑 → ( 𝑁 : ( 𝐵 × 𝐶 ) ⟶ V ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 𝑅 𝑦 ) ) : ( 𝐵 × 𝐶 ) ⟶ V ) ) |
| 29 |
27 28
|
mpbiri |
⊢ ( 𝜑 → 𝑁 : ( 𝐵 × 𝐶 ) ⟶ V ) |
| 30 |
5 10
|
fmpt3d |
⊢ ( 𝜑 → 𝑀 : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
| 31 |
1
|
fcomptf |
⊢ ( ( 𝑁 : ( 𝐵 × 𝐶 ) ⟶ V ∧ 𝑀 : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) → ( 𝑁 ∘ 𝑀 ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝑀 ‘ 𝑎 ) ) ) ) |
| 32 |
29 30 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∘ 𝑀 ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝑀 ‘ 𝑎 ) ) ) ) |
| 33 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
| 34 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑎 ) ) ) |
| 35 |
4 7 8 33 34
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑎 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐺 ‘ 𝑎 ) ) ) ) |
| 36 |
22 32 35
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑁 ∘ 𝑀 ) ) |