Metamath Proof Explorer


Theorem ofresid

Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Hypotheses ofresid.1
|- ( ph -> F : A --> B )
ofresid.2
|- ( ph -> G : A --> B )
ofresid.3
|- ( ph -> A e. V )
Assertion ofresid
|- ( ph -> ( F oF R G ) = ( F oF ( R |` ( B X. B ) ) G ) )

Proof

Step Hyp Ref Expression
1 ofresid.1
 |-  ( ph -> F : A --> B )
2 ofresid.2
 |-  ( ph -> G : A --> B )
3 ofresid.3
 |-  ( ph -> A e. V )
4 1 ffvelrnda
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. B )
5 2 ffvelrnda
 |-  ( ( ph /\ x e. A ) -> ( G ` x ) e. B )
6 4 5 opelxpd
 |-  ( ( ph /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. B ) )
7 6 fvresd
 |-  ( ( ph /\ x e. A ) -> ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. ) = ( R ` <. ( F ` x ) , ( G ` x ) >. ) )
8 7 eqcomd
 |-  ( ( ph /\ x e. A ) -> ( R ` <. ( F ` x ) , ( G ` x ) >. ) = ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. ) )
9 df-ov
 |-  ( ( F ` x ) R ( G ` x ) ) = ( R ` <. ( F ` x ) , ( G ` x ) >. )
10 df-ov
 |-  ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) = ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. )
11 8 9 10 3eqtr4g
 |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) R ( G ` x ) ) = ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) )
12 11 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. A |-> ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) ) )
13 1 ffnd
 |-  ( ph -> F Fn A )
14 2 ffnd
 |-  ( ph -> G Fn A )
15 inidm
 |-  ( A i^i A ) = A
16 eqidd
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) )
17 eqidd
 |-  ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) )
18 13 14 3 3 15 16 17 offval
 |-  ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) )
19 13 14 3 3 15 16 17 offval
 |-  ( ph -> ( F oF ( R |` ( B X. B ) ) G ) = ( x e. A |-> ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) ) )
20 12 18 19 3eqtr4d
 |-  ( ph -> ( F oF R G ) = ( F oF ( R |` ( B X. B ) ) G ) )