| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofresid.1 |
|- ( ph -> F : A --> B ) |
| 2 |
|
ofresid.2 |
|- ( ph -> G : A --> B ) |
| 3 |
|
ofresid.3 |
|- ( ph -> A e. V ) |
| 4 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
| 5 |
2
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. B ) |
| 6 |
4 5
|
opelxpd |
|- ( ( ph /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. B ) ) |
| 7 |
6
|
fvresd |
|- ( ( ph /\ x e. A ) -> ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. ) = ( R ` <. ( F ` x ) , ( G ` x ) >. ) ) |
| 8 |
7
|
eqcomd |
|- ( ( ph /\ x e. A ) -> ( R ` <. ( F ` x ) , ( G ` x ) >. ) = ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. ) ) |
| 9 |
|
df-ov |
|- ( ( F ` x ) R ( G ` x ) ) = ( R ` <. ( F ` x ) , ( G ` x ) >. ) |
| 10 |
|
df-ov |
|- ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) = ( ( R |` ( B X. B ) ) ` <. ( F ` x ) , ( G ` x ) >. ) |
| 11 |
8 9 10
|
3eqtr4g |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) R ( G ` x ) ) = ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) ) |
| 12 |
11
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. A |-> ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) ) ) |
| 13 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
| 14 |
2
|
ffnd |
|- ( ph -> G Fn A ) |
| 15 |
|
inidm |
|- ( A i^i A ) = A |
| 16 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 17 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
| 18 |
13 14 3 3 15 16 17
|
offval |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 19 |
13 14 3 3 15 16 17
|
offval |
|- ( ph -> ( F oF ( R |` ( B X. B ) ) G ) = ( x e. A |-> ( ( F ` x ) ( R |` ( B X. B ) ) ( G ` x ) ) ) ) |
| 20 |
12 18 19
|
3eqtr4d |
|- ( ph -> ( F oF R G ) = ( F oF ( R |` ( B X. B ) ) G ) ) |