Metamath Proof Explorer


Theorem ofresid

Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Hypotheses ofresid.1 φF:AB
ofresid.2 φG:AB
ofresid.3 φAV
Assertion ofresid φFRfG=FRB×BfG

Proof

Step Hyp Ref Expression
1 ofresid.1 φF:AB
2 ofresid.2 φG:AB
3 ofresid.3 φAV
4 1 ffvelcdmda φxAFxB
5 2 ffvelcdmda φxAGxB
6 4 5 opelxpd φxAFxGxB×B
7 6 fvresd φxARB×BFxGx=RFxGx
8 7 eqcomd φxARFxGx=RB×BFxGx
9 df-ov FxRGx=RFxGx
10 df-ov FxRB×BGx=RB×BFxGx
11 8 9 10 3eqtr4g φxAFxRGx=FxRB×BGx
12 11 mpteq2dva φxAFxRGx=xAFxRB×BGx
13 1 ffnd φFFnA
14 2 ffnd φGFnA
15 inidm AA=A
16 eqidd φxAFx=Fx
17 eqidd φxAGx=Gx
18 13 14 3 3 15 16 17 offval φFRfG=xAFxRGx
19 13 14 3 3 15 16 17 offval φFRB×BfG=xAFxRB×BGx
20 12 18 19 3eqtr4d φFRfG=FRB×BfG