| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oicl.1 |
|- F = OrdIso ( R , A ) |
| 2 |
1
|
ordtype |
|- ( ( R We A /\ R Se A ) -> F Isom _E , R ( dom F , A ) ) |
| 3 |
|
isof1o |
|- ( F Isom _E , R ( dom F , A ) -> F : dom F -1-1-onto-> A ) |
| 4 |
|
f1of1 |
|- ( F : dom F -1-1-onto-> A -> F : dom F -1-1-> A ) |
| 5 |
2 3 4
|
3syl |
|- ( ( R We A /\ R Se A ) -> F : dom F -1-1-> A ) |
| 6 |
|
f1f |
|- ( F : dom F -1-1-> A -> F : dom F --> A ) |
| 7 |
|
f1dmex |
|- ( ( F : dom F -1-1-> A /\ A e. V ) -> dom F e. _V ) |
| 8 |
|
fex |
|- ( ( F : dom F --> A /\ dom F e. _V ) -> F e. _V ) |
| 9 |
6 7 8
|
syl2an2r |
|- ( ( F : dom F -1-1-> A /\ A e. V ) -> F e. _V ) |
| 10 |
9
|
expcom |
|- ( A e. V -> ( F : dom F -1-1-> A -> F e. _V ) ) |
| 11 |
5 10
|
syl5 |
|- ( A e. V -> ( ( R We A /\ R Se A ) -> F e. _V ) ) |
| 12 |
1
|
oi0 |
|- ( -. ( R We A /\ R Se A ) -> F = (/) ) |
| 13 |
|
0ex |
|- (/) e. _V |
| 14 |
12 13
|
eqeltrdi |
|- ( -. ( R We A /\ R Se A ) -> F e. _V ) |
| 15 |
11 14
|
pm2.61d1 |
|- ( A e. V -> F e. _V ) |