| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordwe |
|- ( Ord A -> _E We A ) |
| 2 |
|
epse |
|- _E Se A |
| 3 |
2
|
a1i |
|- ( Ord A -> _E Se A ) |
| 4 |
|
eqid |
|- OrdIso ( _E , A ) = OrdIso ( _E , A ) |
| 5 |
4
|
oiiso2 |
|- ( ( _E We A /\ _E Se A ) -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) ) |
| 6 |
1 2 5
|
sylancl |
|- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) ) |
| 7 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
| 8 |
4
|
oismo |
|- ( A C_ On -> ( Smo OrdIso ( _E , A ) /\ ran OrdIso ( _E , A ) = A ) ) |
| 9 |
7 8
|
syl |
|- ( Ord A -> ( Smo OrdIso ( _E , A ) /\ ran OrdIso ( _E , A ) = A ) ) |
| 10 |
|
isoeq5 |
|- ( ran OrdIso ( _E , A ) = A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) <-> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) ) |
| 11 |
9 10
|
simpl2im |
|- ( Ord A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) <-> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) ) |
| 12 |
6 11
|
mpbid |
|- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) |
| 13 |
4
|
oicl |
|- Ord dom OrdIso ( _E , A ) |
| 14 |
13
|
a1i |
|- ( Ord A -> Ord dom OrdIso ( _E , A ) ) |
| 15 |
|
id |
|- ( Ord A -> Ord A ) |
| 16 |
|
ordiso2 |
|- ( ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) /\ Ord dom OrdIso ( _E , A ) /\ Ord A ) -> dom OrdIso ( _E , A ) = A ) |
| 17 |
12 14 15 16
|
syl3anc |
|- ( Ord A -> dom OrdIso ( _E , A ) = A ) |
| 18 |
|
isoeq4 |
|- ( dom OrdIso ( _E , A ) = A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) <-> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) ) |
| 19 |
17 18
|
syl |
|- ( Ord A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) <-> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) ) |
| 20 |
12 19
|
mpbid |
|- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) |
| 21 |
|
weniso |
|- ( ( _E We A /\ _E Se A /\ OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) -> OrdIso ( _E , A ) = ( _I |` A ) ) |
| 22 |
1 3 20 21
|
syl3anc |
|- ( Ord A -> OrdIso ( _E , A ) = ( _I |` A ) ) |