| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oismo.1 |  |-  F = OrdIso ( _E , A ) | 
						
							| 2 |  | epweon |  |-  _E We On | 
						
							| 3 |  | wess |  |-  ( A C_ On -> ( _E We On -> _E We A ) ) | 
						
							| 4 | 2 3 | mpi |  |-  ( A C_ On -> _E We A ) | 
						
							| 5 |  | epse |  |-  _E Se A | 
						
							| 6 | 1 | oiiso2 |  |-  ( ( _E We A /\ _E Se A ) -> F Isom _E , _E ( dom F , ran F ) ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( A C_ On -> F Isom _E , _E ( dom F , ran F ) ) | 
						
							| 8 | 1 | oicl |  |-  Ord dom F | 
						
							| 9 | 1 | oif |  |-  F : dom F --> A | 
						
							| 10 |  | frn |  |-  ( F : dom F --> A -> ran F C_ A ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ran F C_ A | 
						
							| 12 |  | id |  |-  ( A C_ On -> A C_ On ) | 
						
							| 13 | 11 12 | sstrid |  |-  ( A C_ On -> ran F C_ On ) | 
						
							| 14 |  | smoiso2 |  |-  ( ( Ord dom F /\ ran F C_ On ) -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) | 
						
							| 15 | 8 13 14 | sylancr |  |-  ( A C_ On -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) | 
						
							| 16 | 7 15 | mpbird |  |-  ( A C_ On -> ( F : dom F -onto-> ran F /\ Smo F ) ) | 
						
							| 17 | 16 | simprd |  |-  ( A C_ On -> Smo F ) | 
						
							| 18 | 11 | a1i |  |-  ( A C_ On -> ran F C_ A ) | 
						
							| 19 |  | simprl |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. A ) | 
						
							| 20 | 4 | adantr |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E We A ) | 
						
							| 21 | 5 | a1i |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E Se A ) | 
						
							| 22 |  | ffn |  |-  ( F : dom F --> A -> F Fn dom F ) | 
						
							| 23 | 9 22 | mp1i |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Fn dom F ) | 
						
							| 24 |  | simplrr |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> -. x e. ran F ) | 
						
							| 25 | 4 | ad2antrr |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E We A ) | 
						
							| 26 | 5 | a1i |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E Se A ) | 
						
							| 27 |  | simplrl |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. A ) | 
						
							| 28 |  | simpr |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. dom F ) | 
						
							| 29 | 1 | oiiniseg |  |-  ( ( ( _E We A /\ _E Se A ) /\ ( x e. A /\ y e. dom F ) ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) | 
						
							| 30 | 25 26 27 28 29 | syl22anc |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) | 
						
							| 31 | 30 | ord |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( -. ( F ` y ) _E x -> x e. ran F ) ) | 
						
							| 32 | 24 31 | mt3d |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) _E x ) | 
						
							| 33 |  | epel |  |-  ( ( F ` y ) _E x <-> ( F ` y ) e. x ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) e. x ) | 
						
							| 35 | 34 | ralrimiva |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> A. y e. dom F ( F ` y ) e. x ) | 
						
							| 36 |  | ffnfv |  |-  ( F : dom F --> x <-> ( F Fn dom F /\ A. y e. dom F ( F ` y ) e. x ) ) | 
						
							| 37 | 23 35 36 | sylanbrc |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F : dom F --> x ) | 
						
							| 38 | 9 22 | mp1i |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> F Fn dom F ) | 
						
							| 39 | 17 | ad2antrr |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> Smo F ) | 
						
							| 40 |  | smogt |  |-  ( ( F Fn dom F /\ Smo F /\ y e. dom F ) -> y C_ ( F ` y ) ) | 
						
							| 41 | 38 39 28 40 | syl3anc |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y C_ ( F ` y ) ) | 
						
							| 42 |  | ordelon |  |-  ( ( Ord dom F /\ y e. dom F ) -> y e. On ) | 
						
							| 43 | 8 28 42 | sylancr |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. On ) | 
						
							| 44 |  | simpll |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> A C_ On ) | 
						
							| 45 | 44 27 | sseldd |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. On ) | 
						
							| 46 |  | ontr2 |  |-  ( ( y e. On /\ x e. On ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) | 
						
							| 47 | 43 45 46 | syl2anc |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) | 
						
							| 48 | 41 34 47 | mp2and |  |-  ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. x ) | 
						
							| 49 | 48 | ex |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ( y e. dom F -> y e. x ) ) | 
						
							| 50 | 49 | ssrdv |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F C_ x ) | 
						
							| 51 | 19 50 | ssexd |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F e. _V ) | 
						
							| 52 |  | fex2 |  |-  ( ( F : dom F --> x /\ dom F e. _V /\ x e. A ) -> F e. _V ) | 
						
							| 53 | 37 51 19 52 | syl3anc |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F e. _V ) | 
						
							| 54 | 1 | ordtype2 |  |-  ( ( _E We A /\ _E Se A /\ F e. _V ) -> F Isom _E , _E ( dom F , A ) ) | 
						
							| 55 | 20 21 53 54 | syl3anc |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Isom _E , _E ( dom F , A ) ) | 
						
							| 56 |  | isof1o |  |-  ( F Isom _E , _E ( dom F , A ) -> F : dom F -1-1-onto-> A ) | 
						
							| 57 |  | f1ofo |  |-  ( F : dom F -1-1-onto-> A -> F : dom F -onto-> A ) | 
						
							| 58 |  | forn |  |-  ( F : dom F -onto-> A -> ran F = A ) | 
						
							| 59 | 55 56 57 58 | 4syl |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ran F = A ) | 
						
							| 60 | 19 59 | eleqtrrd |  |-  ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. ran F ) | 
						
							| 61 | 60 | expr |  |-  ( ( A C_ On /\ x e. A ) -> ( -. x e. ran F -> x e. ran F ) ) | 
						
							| 62 | 61 | pm2.18d |  |-  ( ( A C_ On /\ x e. A ) -> x e. ran F ) | 
						
							| 63 | 18 62 | eqelssd |  |-  ( A C_ On -> ran F = A ) | 
						
							| 64 | 17 63 | jca |  |-  ( A C_ On -> ( Smo F /\ ran F = A ) ) |