Metamath Proof Explorer


Theorem oiid

Description: The order type of an ordinal under the e. order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion oiid OrdAOrdIsoEA=IA

Proof

Step Hyp Ref Expression
1 ordwe OrdAEWeA
2 epse ESeA
3 2 a1i OrdAESeA
4 eqid OrdIsoEA=OrdIsoEA
5 4 oiiso2 EWeAESeAOrdIsoEAIsomE,EdomOrdIsoEAranOrdIsoEA
6 1 2 5 sylancl OrdAOrdIsoEAIsomE,EdomOrdIsoEAranOrdIsoEA
7 ordsson OrdAAOn
8 4 oismo AOnSmoOrdIsoEAranOrdIsoEA=A
9 7 8 syl OrdASmoOrdIsoEAranOrdIsoEA=A
10 isoeq5 ranOrdIsoEA=AOrdIsoEAIsomE,EdomOrdIsoEAranOrdIsoEAOrdIsoEAIsomE,EdomOrdIsoEAA
11 9 10 simpl2im OrdAOrdIsoEAIsomE,EdomOrdIsoEAranOrdIsoEAOrdIsoEAIsomE,EdomOrdIsoEAA
12 6 11 mpbid OrdAOrdIsoEAIsomE,EdomOrdIsoEAA
13 4 oicl OrddomOrdIsoEA
14 13 a1i OrdAOrddomOrdIsoEA
15 id OrdAOrdA
16 ordiso2 OrdIsoEAIsomE,EdomOrdIsoEAAOrddomOrdIsoEAOrdAdomOrdIsoEA=A
17 12 14 15 16 syl3anc OrdAdomOrdIsoEA=A
18 isoeq4 domOrdIsoEA=AOrdIsoEAIsomE,EdomOrdIsoEAAOrdIsoEAIsomE,EAA
19 17 18 syl OrdAOrdIsoEAIsomE,EdomOrdIsoEAAOrdIsoEAIsomE,EAA
20 12 19 mpbid OrdAOrdIsoEAIsomE,EAA
21 weniso EWeAESeAOrdIsoEAIsomE,EAAOrdIsoEA=IA
22 1 3 20 21 syl3anc OrdAOrdIsoEA=IA