Description: The order type of an ordinal under the e. order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oiid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordwe | |
|
2 | epse | |
|
3 | 2 | a1i | |
4 | eqid | |
|
5 | 4 | oiiso2 | |
6 | 1 2 5 | sylancl | |
7 | ordsson | |
|
8 | 4 | oismo | |
9 | 7 8 | syl | |
10 | isoeq5 | |
|
11 | 9 10 | simpl2im | |
12 | 6 11 | mpbid | |
13 | 4 | oicl | |
14 | 13 | a1i | |
15 | id | |
|
16 | ordiso2 | |
|
17 | 12 14 15 16 | syl3anc | |
18 | isoeq4 | |
|
19 | 17 18 | syl | |
20 | 12 19 | mpbid | |
21 | weniso | |
|
22 | 1 3 20 21 | syl3anc | |