Metamath Proof Explorer


Theorem omeoALTV

Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omeoALTV
|- ( ( A e. Odd /\ B e. Even ) -> ( A - B ) e. Odd )

Proof

Step Hyp Ref Expression
1 oddz
 |-  ( A e. Odd -> A e. ZZ )
2 1 zcnd
 |-  ( A e. Odd -> A e. CC )
3 evenz
 |-  ( B e. Even -> B e. ZZ )
4 3 zcnd
 |-  ( B e. Even -> B e. CC )
5 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
6 2 4 5 syl2an
 |-  ( ( A e. Odd /\ B e. Even ) -> ( A + -u B ) = ( A - B ) )
7 enege
 |-  ( B e. Even -> -u B e. Even )
8 opeoALTV
 |-  ( ( A e. Odd /\ -u B e. Even ) -> ( A + -u B ) e. Odd )
9 7 8 sylan2
 |-  ( ( A e. Odd /\ B e. Even ) -> ( A + -u B ) e. Odd )
10 6 9 eqeltrrd
 |-  ( ( A e. Odd /\ B e. Even ) -> ( A - B ) e. Odd )