Metamath Proof Explorer


Theorem omeoALTV

Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omeoALTV ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴𝐵 ) ∈ Odd )

Proof

Step Hyp Ref Expression
1 oddz ( 𝐴 ∈ Odd → 𝐴 ∈ ℤ )
2 1 zcnd ( 𝐴 ∈ Odd → 𝐴 ∈ ℂ )
3 evenz ( 𝐵 ∈ Even → 𝐵 ∈ ℤ )
4 3 zcnd ( 𝐵 ∈ Even → 𝐵 ∈ ℂ )
5 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
6 2 4 5 syl2an ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
7 enege ( 𝐵 ∈ Even → - 𝐵 ∈ Even )
8 opeoALTV ( ( 𝐴 ∈ Odd ∧ - 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) ∈ Odd )
9 7 8 sylan2 ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) ∈ Odd )
10 6 9 eqeltrrd ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴𝐵 ) ∈ Odd )