Metamath Proof Explorer


Theorem omssrncard

Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion omssrncard
|- _om C_ ran card

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( x e. _om -> x e. On )
2 onelon
 |-  ( ( x e. On /\ y e. x ) -> y e. On )
3 simpl
 |-  ( ( x e. On /\ y e. x ) -> x e. On )
4 simpr
 |-  ( ( x e. On /\ y e. x ) -> y e. x )
5 onelpss
 |-  ( ( y e. On /\ x e. On ) -> ( y e. x <-> ( y C_ x /\ y =/= x ) ) )
6 5 biimpa
 |-  ( ( ( y e. On /\ x e. On ) /\ y e. x ) -> ( y C_ x /\ y =/= x ) )
7 2 3 4 6 syl21anc
 |-  ( ( x e. On /\ y e. x ) -> ( y C_ x /\ y =/= x ) )
8 df-pss
 |-  ( y C. x <-> ( y C_ x /\ y =/= x ) )
9 7 8 sylibr
 |-  ( ( x e. On /\ y e. x ) -> y C. x )
10 9 ex
 |-  ( x e. On -> ( y e. x -> y C. x ) )
11 1 10 syl
 |-  ( x e. _om -> ( y e. x -> y C. x ) )
12 11 imdistani
 |-  ( ( x e. _om /\ y e. x ) -> ( x e. _om /\ y C. x ) )
13 php
 |-  ( ( x e. _om /\ y C. x ) -> -. x ~~ y )
14 12 13 syl
 |-  ( ( x e. _om /\ y e. x ) -> -. x ~~ y )
15 ensymb
 |-  ( x ~~ y <-> y ~~ x )
16 14 15 sylnib
 |-  ( ( x e. _om /\ y e. x ) -> -. y ~~ x )
17 16 ralrimiva
 |-  ( x e. _om -> A. y e. x -. y ~~ x )
18 elrncard
 |-  ( x e. ran card <-> ( x e. On /\ A. y e. x -. y ~~ x ) )
19 1 17 18 sylanbrc
 |-  ( x e. _om -> x e. ran card )
20 19 ssriv
 |-  _om C_ ran card