| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
|- ( x e. _om -> x e. On ) |
| 2 |
|
onelon |
|- ( ( x e. On /\ y e. x ) -> y e. On ) |
| 3 |
|
simpl |
|- ( ( x e. On /\ y e. x ) -> x e. On ) |
| 4 |
|
simpr |
|- ( ( x e. On /\ y e. x ) -> y e. x ) |
| 5 |
|
onelpss |
|- ( ( y e. On /\ x e. On ) -> ( y e. x <-> ( y C_ x /\ y =/= x ) ) ) |
| 6 |
5
|
biimpa |
|- ( ( ( y e. On /\ x e. On ) /\ y e. x ) -> ( y C_ x /\ y =/= x ) ) |
| 7 |
2 3 4 6
|
syl21anc |
|- ( ( x e. On /\ y e. x ) -> ( y C_ x /\ y =/= x ) ) |
| 8 |
|
df-pss |
|- ( y C. x <-> ( y C_ x /\ y =/= x ) ) |
| 9 |
7 8
|
sylibr |
|- ( ( x e. On /\ y e. x ) -> y C. x ) |
| 10 |
9
|
ex |
|- ( x e. On -> ( y e. x -> y C. x ) ) |
| 11 |
1 10
|
syl |
|- ( x e. _om -> ( y e. x -> y C. x ) ) |
| 12 |
11
|
imdistani |
|- ( ( x e. _om /\ y e. x ) -> ( x e. _om /\ y C. x ) ) |
| 13 |
|
php |
|- ( ( x e. _om /\ y C. x ) -> -. x ~~ y ) |
| 14 |
12 13
|
syl |
|- ( ( x e. _om /\ y e. x ) -> -. x ~~ y ) |
| 15 |
|
ensymb |
|- ( x ~~ y <-> y ~~ x ) |
| 16 |
14 15
|
sylnib |
|- ( ( x e. _om /\ y e. x ) -> -. y ~~ x ) |
| 17 |
16
|
ralrimiva |
|- ( x e. _om -> A. y e. x -. y ~~ x ) |
| 18 |
|
elrncard |
|- ( x e. ran card <-> ( x e. On /\ A. y e. x -. y ~~ x ) ) |
| 19 |
1 17 18
|
sylanbrc |
|- ( x e. _om -> x e. ran card ) |
| 20 |
19
|
ssriv |
|- _om C_ ran card |