Metamath Proof Explorer


Theorem omssrncard

Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion omssrncard ω ⊆ ran card

Proof

Step Hyp Ref Expression
1 nnon ( 𝑥 ∈ ω → 𝑥 ∈ On )
2 onelon ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦 ∈ On )
3 simpl ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑥 ∈ On )
4 simpr ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦𝑥 )
5 onelpss ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦𝑥 ↔ ( 𝑦𝑥𝑦𝑥 ) ) )
6 5 biimpa ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑦𝑥 ) → ( 𝑦𝑥𝑦𝑥 ) )
7 2 3 4 6 syl21anc ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ( 𝑦𝑥𝑦𝑥 ) )
8 df-pss ( 𝑦𝑥 ↔ ( 𝑦𝑥𝑦𝑥 ) )
9 7 8 sylibr ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → 𝑦𝑥 )
10 9 ex ( 𝑥 ∈ On → ( 𝑦𝑥𝑦𝑥 ) )
11 1 10 syl ( 𝑥 ∈ ω → ( 𝑦𝑥𝑦𝑥 ) )
12 11 imdistani ( ( 𝑥 ∈ ω ∧ 𝑦𝑥 ) → ( 𝑥 ∈ ω ∧ 𝑦𝑥 ) )
13 php ( ( 𝑥 ∈ ω ∧ 𝑦𝑥 ) → ¬ 𝑥𝑦 )
14 12 13 syl ( ( 𝑥 ∈ ω ∧ 𝑦𝑥 ) → ¬ 𝑥𝑦 )
15 ensymb ( 𝑥𝑦𝑦𝑥 )
16 14 15 sylnib ( ( 𝑥 ∈ ω ∧ 𝑦𝑥 ) → ¬ 𝑦𝑥 )
17 16 ralrimiva ( 𝑥 ∈ ω → ∀ 𝑦𝑥 ¬ 𝑦𝑥 )
18 elrncard ( 𝑥 ∈ ran card ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 ¬ 𝑦𝑥 ) )
19 1 17 18 sylanbrc ( 𝑥 ∈ ω → 𝑥 ∈ ran card )
20 19 ssriv ω ⊆ ran card