Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
2 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
3 |
|
simpl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ On ) |
4 |
|
simpr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
5 |
|
onelpss |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) |
7 |
2 3 4 6
|
syl21anc |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) |
8 |
|
df-pss |
⊢ ( 𝑦 ⊊ 𝑥 ↔ ( 𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊊ 𝑥 ) |
10 |
9
|
ex |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥 ) ) |
11 |
1 10
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥 ) ) |
12 |
11
|
imdistani |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥 ) ) |
13 |
|
php |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥 ) → ¬ 𝑥 ≈ 𝑦 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑥 ≈ 𝑦 ) |
15 |
|
ensymb |
⊢ ( 𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥 ) |
16 |
14 15
|
sylnib |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑦 ≈ 𝑥 ) |
17 |
16
|
ralrimiva |
⊢ ( 𝑥 ∈ ω → ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥 ) |
18 |
|
elrncard |
⊢ ( 𝑥 ∈ ran card ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥 ) ) |
19 |
1 17 18
|
sylanbrc |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ ran card ) |
20 |
19
|
ssriv |
⊢ ω ⊆ ran card |