Metamath Proof Explorer


Theorem oninhaus

Description: The ordinal Hausdorff spaces are 1o and 2o . (Contributed by Chen-Pang He, 10-Nov-2015)

Ref Expression
Assertion oninhaus
|- ( On i^i Haus ) = { 1o , 2o }

Proof

Step Hyp Ref Expression
1 haust1
 |-  ( x e. Haus -> x e. Fre )
2 1 ssriv
 |-  Haus C_ Fre
3 sslin
 |-  ( Haus C_ Fre -> ( On i^i Haus ) C_ ( On i^i Fre ) )
4 2 3 ax-mp
 |-  ( On i^i Haus ) C_ ( On i^i Fre )
5 onint1
 |-  ( On i^i Fre ) = { 1o , 2o }
6 4 5 sseqtri
 |-  ( On i^i Haus ) C_ { 1o , 2o }
7 ssoninhaus
 |-  { 1o , 2o } C_ ( On i^i Haus )
8 6 7 eqssi
 |-  ( On i^i Haus ) = { 1o , 2o }