Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
|- 1o e. On |
2 |
|
2on |
|- 2o e. On |
3 |
|
prssi |
|- ( ( 1o e. On /\ 2o e. On ) -> { 1o , 2o } C_ On ) |
4 |
1 2 3
|
mp2an |
|- { 1o , 2o } C_ On |
5 |
|
df1o2 |
|- 1o = { (/) } |
6 |
|
pw0 |
|- ~P (/) = { (/) } |
7 |
5 6
|
eqtr4i |
|- 1o = ~P (/) |
8 |
|
0ex |
|- (/) e. _V |
9 |
|
dishaus |
|- ( (/) e. _V -> ~P (/) e. Haus ) |
10 |
8 9
|
ax-mp |
|- ~P (/) e. Haus |
11 |
7 10
|
eqeltri |
|- 1o e. Haus |
12 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
13 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
14 |
12 13
|
eqtr4i |
|- 2o = ~P { (/) } |
15 |
|
p0ex |
|- { (/) } e. _V |
16 |
|
dishaus |
|- ( { (/) } e. _V -> ~P { (/) } e. Haus ) |
17 |
15 16
|
ax-mp |
|- ~P { (/) } e. Haus |
18 |
14 17
|
eqeltri |
|- 2o e. Haus |
19 |
|
prssi |
|- ( ( 1o e. Haus /\ 2o e. Haus ) -> { 1o , 2o } C_ Haus ) |
20 |
11 18 19
|
mp2an |
|- { 1o , 2o } C_ Haus |
21 |
4 20
|
ssini |
|- { 1o , 2o } C_ ( On i^i Haus ) |