Metamath Proof Explorer


Theorem ssoninhaus

Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015)

Ref Expression
Assertion ssoninhaus
|- { 1o , 2o } C_ ( On i^i Haus )

Proof

Step Hyp Ref Expression
1 1on
 |-  1o e. On
2 2on
 |-  2o e. On
3 prssi
 |-  ( ( 1o e. On /\ 2o e. On ) -> { 1o , 2o } C_ On )
4 1 2 3 mp2an
 |-  { 1o , 2o } C_ On
5 df1o2
 |-  1o = { (/) }
6 pw0
 |-  ~P (/) = { (/) }
7 5 6 eqtr4i
 |-  1o = ~P (/)
8 0ex
 |-  (/) e. _V
9 dishaus
 |-  ( (/) e. _V -> ~P (/) e. Haus )
10 8 9 ax-mp
 |-  ~P (/) e. Haus
11 7 10 eqeltri
 |-  1o e. Haus
12 df2o2
 |-  2o = { (/) , { (/) } }
13 pwpw0
 |-  ~P { (/) } = { (/) , { (/) } }
14 12 13 eqtr4i
 |-  2o = ~P { (/) }
15 p0ex
 |-  { (/) } e. _V
16 dishaus
 |-  ( { (/) } e. _V -> ~P { (/) } e. Haus )
17 15 16 ax-mp
 |-  ~P { (/) } e. Haus
18 14 17 eqeltri
 |-  2o e. Haus
19 prssi
 |-  ( ( 1o e. Haus /\ 2o e. Haus ) -> { 1o , 2o } C_ Haus )
20 11 18 19 mp2an
 |-  { 1o , 2o } C_ Haus
21 4 20 ssini
 |-  { 1o , 2o } C_ ( On i^i Haus )