| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1on |
|- 1o e. On |
| 2 |
|
2on |
|- 2o e. On |
| 3 |
|
prssi |
|- ( ( 1o e. On /\ 2o e. On ) -> { 1o , 2o } C_ On ) |
| 4 |
1 2 3
|
mp2an |
|- { 1o , 2o } C_ On |
| 5 |
|
df1o2 |
|- 1o = { (/) } |
| 6 |
|
pw0 |
|- ~P (/) = { (/) } |
| 7 |
5 6
|
eqtr4i |
|- 1o = ~P (/) |
| 8 |
|
0ex |
|- (/) e. _V |
| 9 |
|
dishaus |
|- ( (/) e. _V -> ~P (/) e. Haus ) |
| 10 |
8 9
|
ax-mp |
|- ~P (/) e. Haus |
| 11 |
7 10
|
eqeltri |
|- 1o e. Haus |
| 12 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
| 13 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
| 14 |
12 13
|
eqtr4i |
|- 2o = ~P { (/) } |
| 15 |
|
p0ex |
|- { (/) } e. _V |
| 16 |
|
dishaus |
|- ( { (/) } e. _V -> ~P { (/) } e. Haus ) |
| 17 |
15 16
|
ax-mp |
|- ~P { (/) } e. Haus |
| 18 |
14 17
|
eqeltri |
|- 2o e. Haus |
| 19 |
|
prssi |
|- ( ( 1o e. Haus /\ 2o e. Haus ) -> { 1o , 2o } C_ Haus ) |
| 20 |
11 18 19
|
mp2an |
|- { 1o , 2o } C_ Haus |
| 21 |
4 20
|
ssini |
|- { 1o , 2o } C_ ( On i^i Haus ) |