Metamath Proof Explorer


Theorem ssoninhaus

Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015)

Ref Expression
Assertion ssoninhaus { 1o , 2o } ⊆ ( On ∩ Haus )

Proof

Step Hyp Ref Expression
1 1on 1o ∈ On
2 2on 2o ∈ On
3 prssi ( ( 1o ∈ On ∧ 2o ∈ On ) → { 1o , 2o } ⊆ On )
4 1 2 3 mp2an { 1o , 2o } ⊆ On
5 df1o2 1o = { ∅ }
6 pw0 𝒫 ∅ = { ∅ }
7 5 6 eqtr4i 1o = 𝒫 ∅
8 0ex ∅ ∈ V
9 dishaus ( ∅ ∈ V → 𝒫 ∅ ∈ Haus )
10 8 9 ax-mp 𝒫 ∅ ∈ Haus
11 7 10 eqeltri 1o ∈ Haus
12 df2o2 2o = { ∅ , { ∅ } }
13 pwpw0 𝒫 { ∅ } = { ∅ , { ∅ } }
14 12 13 eqtr4i 2o = 𝒫 { ∅ }
15 p0ex { ∅ } ∈ V
16 dishaus ( { ∅ } ∈ V → 𝒫 { ∅ } ∈ Haus )
17 15 16 ax-mp 𝒫 { ∅ } ∈ Haus
18 14 17 eqeltri 2o ∈ Haus
19 prssi ( ( 1o ∈ Haus ∧ 2o ∈ Haus ) → { 1o , 2o } ⊆ Haus )
20 11 18 19 mp2an { 1o , 2o } ⊆ Haus
21 4 20 ssini { 1o , 2o } ⊆ ( On ∩ Haus )