Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssoninhaus | ⊢ { 1o , 2o } ⊆ ( On ∩ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | ⊢ 1o ∈ On | |
| 2 | 2on | ⊢ 2o ∈ On | |
| 3 | prssi | ⊢ ( ( 1o ∈ On ∧ 2o ∈ On ) → { 1o , 2o } ⊆ On ) | |
| 4 | 1 2 3 | mp2an | ⊢ { 1o , 2o } ⊆ On |
| 5 | df1o2 | ⊢ 1o = { ∅ } | |
| 6 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 7 | 5 6 | eqtr4i | ⊢ 1o = 𝒫 ∅ |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | dishaus | ⊢ ( ∅ ∈ V → 𝒫 ∅ ∈ Haus ) | |
| 10 | 8 9 | ax-mp | ⊢ 𝒫 ∅ ∈ Haus |
| 11 | 7 10 | eqeltri | ⊢ 1o ∈ Haus |
| 12 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 13 | pwpw0 | ⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } | |
| 14 | 12 13 | eqtr4i | ⊢ 2o = 𝒫 { ∅ } |
| 15 | p0ex | ⊢ { ∅ } ∈ V | |
| 16 | dishaus | ⊢ ( { ∅ } ∈ V → 𝒫 { ∅ } ∈ Haus ) | |
| 17 | 15 16 | ax-mp | ⊢ 𝒫 { ∅ } ∈ Haus |
| 18 | 14 17 | eqeltri | ⊢ 2o ∈ Haus |
| 19 | prssi | ⊢ ( ( 1o ∈ Haus ∧ 2o ∈ Haus ) → { 1o , 2o } ⊆ Haus ) | |
| 20 | 11 18 19 | mp2an | ⊢ { 1o , 2o } ⊆ Haus |
| 21 | 4 20 | ssini | ⊢ { 1o , 2o } ⊆ ( On ∩ Haus ) |