Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssoninhaus | ⊢ { 1o , 2o } ⊆ ( On ∩ Haus ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on | ⊢ 1o ∈ On | |
2 | 2on | ⊢ 2o ∈ On | |
3 | prssi | ⊢ ( ( 1o ∈ On ∧ 2o ∈ On ) → { 1o , 2o } ⊆ On ) | |
4 | 1 2 3 | mp2an | ⊢ { 1o , 2o } ⊆ On |
5 | df1o2 | ⊢ 1o = { ∅ } | |
6 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
7 | 5 6 | eqtr4i | ⊢ 1o = 𝒫 ∅ |
8 | 0ex | ⊢ ∅ ∈ V | |
9 | dishaus | ⊢ ( ∅ ∈ V → 𝒫 ∅ ∈ Haus ) | |
10 | 8 9 | ax-mp | ⊢ 𝒫 ∅ ∈ Haus |
11 | 7 10 | eqeltri | ⊢ 1o ∈ Haus |
12 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
13 | pwpw0 | ⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } | |
14 | 12 13 | eqtr4i | ⊢ 2o = 𝒫 { ∅ } |
15 | p0ex | ⊢ { ∅ } ∈ V | |
16 | dishaus | ⊢ ( { ∅ } ∈ V → 𝒫 { ∅ } ∈ Haus ) | |
17 | 15 16 | ax-mp | ⊢ 𝒫 { ∅ } ∈ Haus |
18 | 14 17 | eqeltri | ⊢ 2o ∈ Haus |
19 | prssi | ⊢ ( ( 1o ∈ Haus ∧ 2o ∈ Haus ) → { 1o , 2o } ⊆ Haus ) | |
20 | 11 18 19 | mp2an | ⊢ { 1o , 2o } ⊆ Haus |
21 | 4 20 | ssini | ⊢ { 1o , 2o } ⊆ ( On ∩ Haus ) |