Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( j e. ( On i^i Fre ) <-> ( j e. On /\ j e. Fre ) ) |
2 |
|
eqid |
|- U. j = U. j |
3 |
2
|
ist1 |
|- ( j e. Fre <-> ( j e. Top /\ A. a e. U. j { a } e. ( Clsd ` j ) ) ) |
4 |
3
|
simprbi |
|- ( j e. Fre -> A. a e. U. j { a } e. ( Clsd ` j ) ) |
5 |
|
onelon |
|- ( ( j e. On /\ ( U. j \ { (/) } ) e. j ) -> ( U. j \ { (/) } ) e. On ) |
6 |
5
|
ex |
|- ( j e. On -> ( ( U. j \ { (/) } ) e. j -> ( U. j \ { (/) } ) e. On ) ) |
7 |
|
neldifsnd |
|- ( 2o e. j -> -. (/) e. ( U. j \ { (/) } ) ) |
8 |
|
p0ex |
|- { (/) } e. _V |
9 |
8
|
prid2 |
|- { (/) } e. { (/) , { (/) } } |
10 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
11 |
9 10
|
eleqtrri |
|- { (/) } e. 2o |
12 |
|
elunii |
|- ( ( { (/) } e. 2o /\ 2o e. j ) -> { (/) } e. U. j ) |
13 |
11 12
|
mpan |
|- ( 2o e. j -> { (/) } e. U. j ) |
14 |
|
df1o2 |
|- 1o = { (/) } |
15 |
|
1on |
|- 1o e. On |
16 |
14 15
|
eqeltrri |
|- { (/) } e. On |
17 |
16
|
onirri |
|- -. { (/) } e. { (/) } |
18 |
17
|
a1i |
|- ( 2o e. j -> -. { (/) } e. { (/) } ) |
19 |
13 18
|
eldifd |
|- ( 2o e. j -> { (/) } e. ( U. j \ { (/) } ) ) |
20 |
19
|
ne0d |
|- ( 2o e. j -> ( U. j \ { (/) } ) =/= (/) ) |
21 |
7 20
|
2thd |
|- ( 2o e. j -> ( -. (/) e. ( U. j \ { (/) } ) <-> ( U. j \ { (/) } ) =/= (/) ) ) |
22 |
|
nbbn |
|- ( ( -. (/) e. ( U. j \ { (/) } ) <-> ( U. j \ { (/) } ) =/= (/) ) <-> -. ( (/) e. ( U. j \ { (/) } ) <-> ( U. j \ { (/) } ) =/= (/) ) ) |
23 |
21 22
|
sylib |
|- ( 2o e. j -> -. ( (/) e. ( U. j \ { (/) } ) <-> ( U. j \ { (/) } ) =/= (/) ) ) |
24 |
|
on0eln0 |
|- ( ( U. j \ { (/) } ) e. On -> ( (/) e. ( U. j \ { (/) } ) <-> ( U. j \ { (/) } ) =/= (/) ) ) |
25 |
23 24
|
nsyl |
|- ( 2o e. j -> -. ( U. j \ { (/) } ) e. On ) |
26 |
6 25
|
nsyli |
|- ( j e. On -> ( 2o e. j -> -. ( U. j \ { (/) } ) e. j ) ) |
27 |
26
|
imp |
|- ( ( j e. On /\ 2o e. j ) -> -. ( U. j \ { (/) } ) e. j ) |
28 |
|
0ex |
|- (/) e. _V |
29 |
28
|
prid1 |
|- (/) e. { (/) , { (/) } } |
30 |
29 10
|
eleqtrri |
|- (/) e. 2o |
31 |
|
elunii |
|- ( ( (/) e. 2o /\ 2o e. j ) -> (/) e. U. j ) |
32 |
30 31
|
mpan |
|- ( 2o e. j -> (/) e. U. j ) |
33 |
32
|
adantl |
|- ( ( j e. On /\ 2o e. j ) -> (/) e. U. j ) |
34 |
|
simpr |
|- ( ( ( j e. On /\ 2o e. j ) /\ a = (/) ) -> a = (/) ) |
35 |
34
|
sneqd |
|- ( ( ( j e. On /\ 2o e. j ) /\ a = (/) ) -> { a } = { (/) } ) |
36 |
35
|
eleq1d |
|- ( ( ( j e. On /\ 2o e. j ) /\ a = (/) ) -> ( { a } e. ( Clsd ` j ) <-> { (/) } e. ( Clsd ` j ) ) ) |
37 |
33 36
|
rspcdv |
|- ( ( j e. On /\ 2o e. j ) -> ( A. a e. U. j { a } e. ( Clsd ` j ) -> { (/) } e. ( Clsd ` j ) ) ) |
38 |
2
|
cldopn |
|- ( { (/) } e. ( Clsd ` j ) -> ( U. j \ { (/) } ) e. j ) |
39 |
37 38
|
syl6 |
|- ( ( j e. On /\ 2o e. j ) -> ( A. a e. U. j { a } e. ( Clsd ` j ) -> ( U. j \ { (/) } ) e. j ) ) |
40 |
27 39
|
mtod |
|- ( ( j e. On /\ 2o e. j ) -> -. A. a e. U. j { a } e. ( Clsd ` j ) ) |
41 |
40
|
ex |
|- ( j e. On -> ( 2o e. j -> -. A. a e. U. j { a } e. ( Clsd ` j ) ) ) |
42 |
41
|
con2d |
|- ( j e. On -> ( A. a e. U. j { a } e. ( Clsd ` j ) -> -. 2o e. j ) ) |
43 |
4 42
|
syl5 |
|- ( j e. On -> ( j e. Fre -> -. 2o e. j ) ) |
44 |
|
2on |
|- 2o e. On |
45 |
|
ontri1 |
|- ( ( j e. On /\ 2o e. On ) -> ( j C_ 2o <-> -. 2o e. j ) ) |
46 |
|
onsssuc |
|- ( ( j e. On /\ 2o e. On ) -> ( j C_ 2o <-> j e. suc 2o ) ) |
47 |
45 46
|
bitr3d |
|- ( ( j e. On /\ 2o e. On ) -> ( -. 2o e. j <-> j e. suc 2o ) ) |
48 |
44 47
|
mpan2 |
|- ( j e. On -> ( -. 2o e. j <-> j e. suc 2o ) ) |
49 |
43 48
|
sylibd |
|- ( j e. On -> ( j e. Fre -> j e. suc 2o ) ) |
50 |
49
|
imp |
|- ( ( j e. On /\ j e. Fre ) -> j e. suc 2o ) |
51 |
|
0ntop |
|- -. (/) e. Top |
52 |
|
t1top |
|- ( (/) e. Fre -> (/) e. Top ) |
53 |
51 52
|
mto |
|- -. (/) e. Fre |
54 |
|
nelneq |
|- ( ( j e. Fre /\ -. (/) e. Fre ) -> -. j = (/) ) |
55 |
53 54
|
mpan2 |
|- ( j e. Fre -> -. j = (/) ) |
56 |
|
elsni |
|- ( j e. { (/) } -> j = (/) ) |
57 |
55 56
|
nsyl |
|- ( j e. Fre -> -. j e. { (/) } ) |
58 |
57
|
adantl |
|- ( ( j e. On /\ j e. Fre ) -> -. j e. { (/) } ) |
59 |
50 58
|
eldifd |
|- ( ( j e. On /\ j e. Fre ) -> j e. ( suc 2o \ { (/) } ) ) |
60 |
1 59
|
sylbi |
|- ( j e. ( On i^i Fre ) -> j e. ( suc 2o \ { (/) } ) ) |
61 |
60
|
ssriv |
|- ( On i^i Fre ) C_ ( suc 2o \ { (/) } ) |
62 |
|
df-suc |
|- suc 2o = ( 2o u. { 2o } ) |
63 |
62
|
difeq1i |
|- ( suc 2o \ { (/) } ) = ( ( 2o u. { 2o } ) \ { (/) } ) |
64 |
|
difundir |
|- ( ( 2o u. { 2o } ) \ { (/) } ) = ( ( 2o \ { (/) } ) u. ( { 2o } \ { (/) } ) ) |
65 |
63 64
|
eqtri |
|- ( suc 2o \ { (/) } ) = ( ( 2o \ { (/) } ) u. ( { 2o } \ { (/) } ) ) |
66 |
|
df-pr |
|- { 1o , 2o } = ( { 1o } u. { 2o } ) |
67 |
|
df2o3 |
|- 2o = { (/) , 1o } |
68 |
|
df-pr |
|- { (/) , 1o } = ( { (/) } u. { 1o } ) |
69 |
67 68
|
eqtri |
|- 2o = ( { (/) } u. { 1o } ) |
70 |
69
|
difeq1i |
|- ( 2o \ { (/) } ) = ( ( { (/) } u. { 1o } ) \ { (/) } ) |
71 |
|
difundir |
|- ( ( { (/) } u. { 1o } ) \ { (/) } ) = ( ( { (/) } \ { (/) } ) u. ( { 1o } \ { (/) } ) ) |
72 |
|
difid |
|- ( { (/) } \ { (/) } ) = (/) |
73 |
|
1n0 |
|- 1o =/= (/) |
74 |
|
disjsn2 |
|- ( 1o =/= (/) -> ( { 1o } i^i { (/) } ) = (/) ) |
75 |
73 74
|
ax-mp |
|- ( { 1o } i^i { (/) } ) = (/) |
76 |
75
|
difeq2i |
|- ( { 1o } \ ( { 1o } i^i { (/) } ) ) = ( { 1o } \ (/) ) |
77 |
|
difin |
|- ( { 1o } \ ( { 1o } i^i { (/) } ) ) = ( { 1o } \ { (/) } ) |
78 |
|
dif0 |
|- ( { 1o } \ (/) ) = { 1o } |
79 |
76 77 78
|
3eqtr3i |
|- ( { 1o } \ { (/) } ) = { 1o } |
80 |
72 79
|
uneq12i |
|- ( ( { (/) } \ { (/) } ) u. ( { 1o } \ { (/) } ) ) = ( (/) u. { 1o } ) |
81 |
|
uncom |
|- ( (/) u. { 1o } ) = ( { 1o } u. (/) ) |
82 |
|
un0 |
|- ( { 1o } u. (/) ) = { 1o } |
83 |
80 81 82
|
3eqtri |
|- ( ( { (/) } \ { (/) } ) u. ( { 1o } \ { (/) } ) ) = { 1o } |
84 |
70 71 83
|
3eqtri |
|- ( 2o \ { (/) } ) = { 1o } |
85 |
|
2on0 |
|- 2o =/= (/) |
86 |
|
disjsn2 |
|- ( 2o =/= (/) -> ( { 2o } i^i { (/) } ) = (/) ) |
87 |
85 86
|
ax-mp |
|- ( { 2o } i^i { (/) } ) = (/) |
88 |
87
|
difeq2i |
|- ( { 2o } \ ( { 2o } i^i { (/) } ) ) = ( { 2o } \ (/) ) |
89 |
|
difin |
|- ( { 2o } \ ( { 2o } i^i { (/) } ) ) = ( { 2o } \ { (/) } ) |
90 |
|
dif0 |
|- ( { 2o } \ (/) ) = { 2o } |
91 |
88 89 90
|
3eqtr3i |
|- ( { 2o } \ { (/) } ) = { 2o } |
92 |
84 91
|
uneq12i |
|- ( ( 2o \ { (/) } ) u. ( { 2o } \ { (/) } ) ) = ( { 1o } u. { 2o } ) |
93 |
66 92
|
eqtr4i |
|- { 1o , 2o } = ( ( 2o \ { (/) } ) u. ( { 2o } \ { (/) } ) ) |
94 |
65 93
|
eqtr4i |
|- ( suc 2o \ { (/) } ) = { 1o , 2o } |
95 |
61 94
|
sseqtri |
|- ( On i^i Fre ) C_ { 1o , 2o } |
96 |
|
ssoninhaus |
|- { 1o , 2o } C_ ( On i^i Haus ) |
97 |
|
haust1 |
|- ( j e. Haus -> j e. Fre ) |
98 |
97
|
ssriv |
|- Haus C_ Fre |
99 |
|
sslin |
|- ( Haus C_ Fre -> ( On i^i Haus ) C_ ( On i^i Fre ) ) |
100 |
98 99
|
ax-mp |
|- ( On i^i Haus ) C_ ( On i^i Fre ) |
101 |
96 100
|
sstri |
|- { 1o , 2o } C_ ( On i^i Fre ) |
102 |
95 101
|
eqssi |
|- ( On i^i Fre ) = { 1o , 2o } |