Metamath Proof Explorer


Theorem oninhaus

Description: The ordinal Hausdorff spaces are 1o and 2o . (Contributed by Chen-Pang He, 10-Nov-2015)

Ref Expression
Assertion oninhaus ( On ∩ Haus ) = { 1o , 2o }

Proof

Step Hyp Ref Expression
1 haust1 ( 𝑥 ∈ Haus → 𝑥 ∈ Fre )
2 1 ssriv Haus ⊆ Fre
3 sslin ( Haus ⊆ Fre → ( On ∩ Haus ) ⊆ ( On ∩ Fre ) )
4 2 3 ax-mp ( On ∩ Haus ) ⊆ ( On ∩ Fre )
5 onint1 ( On ∩ Fre ) = { 1o , 2o }
6 4 5 sseqtri ( On ∩ Haus ) ⊆ { 1o , 2o }
7 ssoninhaus { 1o , 2o } ⊆ ( On ∩ Haus )
8 6 7 eqssi ( On ∩ Haus ) = { 1o , 2o }