Description: The ordinal Hausdorff spaces are 1o and 2o . (Contributed by Chen-Pang He, 10-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oninhaus | ⊢ ( On ∩ Haus ) = { 1o , 2o } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 | ⊢ ( 𝑥 ∈ Haus → 𝑥 ∈ Fre ) | |
2 | 1 | ssriv | ⊢ Haus ⊆ Fre |
3 | sslin | ⊢ ( Haus ⊆ Fre → ( On ∩ Haus ) ⊆ ( On ∩ Fre ) ) | |
4 | 2 3 | ax-mp | ⊢ ( On ∩ Haus ) ⊆ ( On ∩ Fre ) |
5 | onint1 | ⊢ ( On ∩ Fre ) = { 1o , 2o } | |
6 | 4 5 | sseqtri | ⊢ ( On ∩ Haus ) ⊆ { 1o , 2o } |
7 | ssoninhaus | ⊢ { 1o , 2o } ⊆ ( On ∩ Haus ) | |
8 | 6 7 | eqssi | ⊢ ( On ∩ Haus ) = { 1o , 2o } |