Metamath Proof Explorer


Theorem onsucf1lem

Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion onsucf1lem
|- ( A e. On -> E* b e. On A = suc b )

Proof

Step Hyp Ref Expression
1 onuni
 |-  ( A e. On -> U. A e. On )
2 onsucuni2
 |-  ( ( A e. On /\ A = suc b ) -> suc U. A = A )
3 2 adantlr
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> suc U. A = A )
4 simpr
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> A = suc b )
5 3 4 eqtr2d
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> suc b = suc U. A )
6 1 anim1i
 |-  ( ( A e. On /\ b e. On ) -> ( U. A e. On /\ b e. On ) )
7 6 adantr
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> ( U. A e. On /\ b e. On ) )
8 7 ancomd
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> ( b e. On /\ U. A e. On ) )
9 suc11
 |-  ( ( b e. On /\ U. A e. On ) -> ( suc b = suc U. A <-> b = U. A ) )
10 8 9 syl
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> ( suc b = suc U. A <-> b = U. A ) )
11 5 10 mpbid
 |-  ( ( ( A e. On /\ b e. On ) /\ A = suc b ) -> b = U. A )
12 11 ex
 |-  ( ( A e. On /\ b e. On ) -> ( A = suc b -> b = U. A ) )
13 12 ralrimiva
 |-  ( A e. On -> A. b e. On ( A = suc b -> b = U. A ) )
14 eqeq2
 |-  ( c = U. A -> ( b = c <-> b = U. A ) )
15 14 imbi2d
 |-  ( c = U. A -> ( ( A = suc b -> b = c ) <-> ( A = suc b -> b = U. A ) ) )
16 15 ralbidv
 |-  ( c = U. A -> ( A. b e. On ( A = suc b -> b = c ) <-> A. b e. On ( A = suc b -> b = U. A ) ) )
17 1 13 16 spcedv
 |-  ( A e. On -> E. c A. b e. On ( A = suc b -> b = c ) )
18 nfv
 |-  F/ c A = suc b
19 18 rmo2
 |-  ( E* b e. On A = suc b <-> E. c A. b e. On ( A = suc b -> b = c ) )
20 17 19 sylibr
 |-  ( A e. On -> E* b e. On A = suc b )