| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onuni |  |-  ( A e. On -> U. A e. On ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> U. A e. On ) | 
						
							| 3 |  | eloni |  |-  ( A e. On -> Ord A ) | 
						
							| 4 |  | unizlim |  |-  ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) | 
						
							| 5 |  | oran |  |-  ( ( A = (/) \/ Lim A ) <-> -. ( -. A = (/) /\ -. Lim A ) ) | 
						
							| 6 |  | df-ne |  |-  ( A =/= (/) <-> -. A = (/) ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( A =/= (/) /\ -. Lim A ) <-> ( -. A = (/) /\ -. Lim A ) ) | 
						
							| 8 | 5 7 | xchbinxr |  |-  ( ( A = (/) \/ Lim A ) <-> -. ( A =/= (/) /\ -. Lim A ) ) | 
						
							| 9 | 4 8 | bitrdi |  |-  ( Ord A -> ( A = U. A <-> -. ( A =/= (/) /\ -. Lim A ) ) ) | 
						
							| 10 | 3 9 | syl |  |-  ( A e. On -> ( A = U. A <-> -. ( A =/= (/) /\ -. Lim A ) ) ) | 
						
							| 11 |  | pm2.21 |  |-  ( -. ( A =/= (/) /\ -. Lim A ) -> ( ( A =/= (/) /\ -. Lim A ) -> A = suc U. A ) ) | 
						
							| 12 | 10 11 | biimtrdi |  |-  ( A e. On -> ( A = U. A -> ( ( A =/= (/) /\ -. Lim A ) -> A = suc U. A ) ) ) | 
						
							| 13 | 12 | com23 |  |-  ( A e. On -> ( ( A =/= (/) /\ -. Lim A ) -> ( A = U. A -> A = suc U. A ) ) ) | 
						
							| 14 | 13 | 3impib |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = U. A -> A = suc U. A ) ) | 
						
							| 15 |  | idd |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = suc U. A -> A = suc U. A ) ) | 
						
							| 16 |  | onuniorsuc |  |-  ( A e. On -> ( A = U. A \/ A = suc U. A ) ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = U. A \/ A = suc U. A ) ) | 
						
							| 18 | 14 15 17 | mpjaod |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> A = suc U. A ) | 
						
							| 19 | 2 18 | jca |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( U. A e. On /\ A = suc U. A ) ) | 
						
							| 20 |  | eleq1 |  |-  ( b = U. A -> ( b e. On <-> U. A e. On ) ) | 
						
							| 21 |  | suceq |  |-  ( b = U. A -> suc b = suc U. A ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( b = U. A -> ( A = suc b <-> A = suc U. A ) ) | 
						
							| 23 | 20 22 | anbi12d |  |-  ( b = U. A -> ( ( b e. On /\ A = suc b ) <-> ( U. A e. On /\ A = suc U. A ) ) ) | 
						
							| 24 | 2 19 23 | spcedv |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E. b ( b e. On /\ A = suc b ) ) | 
						
							| 25 |  | onsucf1lem |  |-  ( A e. On -> E* b e. On A = suc b ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E* b e. On A = suc b ) | 
						
							| 27 |  | df-eu |  |-  ( E! b ( b e. On /\ A = suc b ) <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b ( b e. On /\ A = suc b ) ) ) | 
						
							| 28 |  | df-reu |  |-  ( E! b e. On A = suc b <-> E! b ( b e. On /\ A = suc b ) ) | 
						
							| 29 |  | df-rmo |  |-  ( E* b e. On A = suc b <-> E* b ( b e. On /\ A = suc b ) ) | 
						
							| 30 | 29 | anbi2i |  |-  ( ( E. b ( b e. On /\ A = suc b ) /\ E* b e. On A = suc b ) <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b ( b e. On /\ A = suc b ) ) ) | 
						
							| 31 | 27 28 30 | 3bitr4i |  |-  ( E! b e. On A = suc b <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b e. On A = suc b ) ) | 
						
							| 32 | 24 26 31 | sylanbrc |  |-  ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E! b e. On A = suc b ) |