Step |
Hyp |
Ref |
Expression |
1 |
|
onuni |
|- ( A e. On -> U. A e. On ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> U. A e. On ) |
3 |
|
eloni |
|- ( A e. On -> Ord A ) |
4 |
|
unizlim |
|- ( Ord A -> ( A = U. A <-> ( A = (/) \/ Lim A ) ) ) |
5 |
|
oran |
|- ( ( A = (/) \/ Lim A ) <-> -. ( -. A = (/) /\ -. Lim A ) ) |
6 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
7 |
6
|
anbi1i |
|- ( ( A =/= (/) /\ -. Lim A ) <-> ( -. A = (/) /\ -. Lim A ) ) |
8 |
5 7
|
xchbinxr |
|- ( ( A = (/) \/ Lim A ) <-> -. ( A =/= (/) /\ -. Lim A ) ) |
9 |
4 8
|
bitrdi |
|- ( Ord A -> ( A = U. A <-> -. ( A =/= (/) /\ -. Lim A ) ) ) |
10 |
3 9
|
syl |
|- ( A e. On -> ( A = U. A <-> -. ( A =/= (/) /\ -. Lim A ) ) ) |
11 |
|
pm2.21 |
|- ( -. ( A =/= (/) /\ -. Lim A ) -> ( ( A =/= (/) /\ -. Lim A ) -> A = suc U. A ) ) |
12 |
10 11
|
syl6bi |
|- ( A e. On -> ( A = U. A -> ( ( A =/= (/) /\ -. Lim A ) -> A = suc U. A ) ) ) |
13 |
12
|
com23 |
|- ( A e. On -> ( ( A =/= (/) /\ -. Lim A ) -> ( A = U. A -> A = suc U. A ) ) ) |
14 |
13
|
3impib |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = U. A -> A = suc U. A ) ) |
15 |
|
idd |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = suc U. A -> A = suc U. A ) ) |
16 |
|
onuniorsuc |
|- ( A e. On -> ( A = U. A \/ A = suc U. A ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( A = U. A \/ A = suc U. A ) ) |
18 |
14 15 17
|
mpjaod |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> A = suc U. A ) |
19 |
2 18
|
jca |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> ( U. A e. On /\ A = suc U. A ) ) |
20 |
|
eleq1 |
|- ( b = U. A -> ( b e. On <-> U. A e. On ) ) |
21 |
|
suceq |
|- ( b = U. A -> suc b = suc U. A ) |
22 |
21
|
eqeq2d |
|- ( b = U. A -> ( A = suc b <-> A = suc U. A ) ) |
23 |
20 22
|
anbi12d |
|- ( b = U. A -> ( ( b e. On /\ A = suc b ) <-> ( U. A e. On /\ A = suc U. A ) ) ) |
24 |
2 19 23
|
spcedv |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E. b ( b e. On /\ A = suc b ) ) |
25 |
|
onsucf1lem |
|- ( A e. On -> E* b e. On A = suc b ) |
26 |
25
|
3ad2ant1 |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E* b e. On A = suc b ) |
27 |
|
df-eu |
|- ( E! b ( b e. On /\ A = suc b ) <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b ( b e. On /\ A = suc b ) ) ) |
28 |
|
df-reu |
|- ( E! b e. On A = suc b <-> E! b ( b e. On /\ A = suc b ) ) |
29 |
|
df-rmo |
|- ( E* b e. On A = suc b <-> E* b ( b e. On /\ A = suc b ) ) |
30 |
29
|
anbi2i |
|- ( ( E. b ( b e. On /\ A = suc b ) /\ E* b e. On A = suc b ) <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b ( b e. On /\ A = suc b ) ) ) |
31 |
27 28 30
|
3bitr4i |
|- ( E! b e. On A = suc b <-> ( E. b ( b e. On /\ A = suc b ) /\ E* b e. On A = suc b ) ) |
32 |
24 26 31
|
sylanbrc |
|- ( ( A e. On /\ A =/= (/) /\ -. Lim A ) -> E! b e. On A = suc b ) |