Metamath Proof Explorer


Theorem onsucf1olem

Description: The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion onsucf1olem A On A ¬ Lim A ∃! b On A = suc b

Proof

Step Hyp Ref Expression
1 onuni A On A On
2 1 3ad2ant1 A On A ¬ Lim A A On
3 eloni A On Ord A
4 unizlim Ord A A = A A = Lim A
5 oran A = Lim A ¬ ¬ A = ¬ Lim A
6 df-ne A ¬ A =
7 6 anbi1i A ¬ Lim A ¬ A = ¬ Lim A
8 5 7 xchbinxr A = Lim A ¬ A ¬ Lim A
9 4 8 bitrdi Ord A A = A ¬ A ¬ Lim A
10 3 9 syl A On A = A ¬ A ¬ Lim A
11 pm2.21 ¬ A ¬ Lim A A ¬ Lim A A = suc A
12 10 11 biimtrdi A On A = A A ¬ Lim A A = suc A
13 12 com23 A On A ¬ Lim A A = A A = suc A
14 13 3impib A On A ¬ Lim A A = A A = suc A
15 idd A On A ¬ Lim A A = suc A A = suc A
16 onuniorsuc A On A = A A = suc A
17 16 3ad2ant1 A On A ¬ Lim A A = A A = suc A
18 14 15 17 mpjaod A On A ¬ Lim A A = suc A
19 2 18 jca A On A ¬ Lim A A On A = suc A
20 eleq1 b = A b On A On
21 suceq b = A suc b = suc A
22 21 eqeq2d b = A A = suc b A = suc A
23 20 22 anbi12d b = A b On A = suc b A On A = suc A
24 2 19 23 spcedv A On A ¬ Lim A b b On A = suc b
25 onsucf1lem A On * b On A = suc b
26 25 3ad2ant1 A On A ¬ Lim A * b On A = suc b
27 df-eu ∃! b b On A = suc b b b On A = suc b * b b On A = suc b
28 df-reu ∃! b On A = suc b ∃! b b On A = suc b
29 df-rmo * b On A = suc b * b b On A = suc b
30 29 anbi2i b b On A = suc b * b On A = suc b b b On A = suc b * b b On A = suc b
31 27 28 30 3bitr4i ∃! b On A = suc b b b On A = suc b * b On A = suc b
32 24 26 31 sylanbrc A On A ¬ Lim A ∃! b On A = suc b