Step |
Hyp |
Ref |
Expression |
1 |
|
onuni |
⊢ ( 𝐴 ∈ On → ∪ 𝐴 ∈ On ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ∪ 𝐴 ∈ On ) |
3 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
4 |
|
unizlim |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
5 |
|
oran |
⊢ ( ( 𝐴 = ∅ ∨ Lim 𝐴 ) ↔ ¬ ( ¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴 ) ) |
6 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ Lim 𝐴 ) ) |
8 |
5 7
|
xchbinxr |
⊢ ( ( 𝐴 = ∅ ∨ Lim 𝐴 ) ↔ ¬ ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ) |
9 |
4 8
|
bitrdi |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ) ) |
10 |
3 9
|
syl |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ) ) |
11 |
|
pm2.21 |
⊢ ( ¬ ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → 𝐴 = suc ∪ 𝐴 ) ) |
12 |
10 11
|
biimtrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 → ( ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → 𝐴 = suc ∪ 𝐴 ) ) ) |
13 |
12
|
com23 |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) ) ) |
14 |
13
|
3impib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) ) |
15 |
|
idd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( 𝐴 = suc ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) ) |
16 |
|
onuniorsuc |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |
18 |
14 15 17
|
mpjaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → 𝐴 = suc ∪ 𝐴 ) |
19 |
2 18
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ( ∪ 𝐴 ∈ On ∧ 𝐴 = suc ∪ 𝐴 ) ) |
20 |
|
eleq1 |
⊢ ( 𝑏 = ∪ 𝐴 → ( 𝑏 ∈ On ↔ ∪ 𝐴 ∈ On ) ) |
21 |
|
suceq |
⊢ ( 𝑏 = ∪ 𝐴 → suc 𝑏 = suc ∪ 𝐴 ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑏 = ∪ 𝐴 → ( 𝐴 = suc 𝑏 ↔ 𝐴 = suc ∪ 𝐴 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑏 = ∪ 𝐴 → ( ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ↔ ( ∪ 𝐴 ∈ On ∧ 𝐴 = suc ∪ 𝐴 ) ) ) |
24 |
2 19 23
|
spcedv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ∃ 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ) |
25 |
|
onsucf1lem |
⊢ ( 𝐴 ∈ On → ∃* 𝑏 ∈ On 𝐴 = suc 𝑏 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ∃* 𝑏 ∈ On 𝐴 = suc 𝑏 ) |
27 |
|
df-eu |
⊢ ( ∃! 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ↔ ( ∃ 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ∧ ∃* 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ) ) |
28 |
|
df-reu |
⊢ ( ∃! 𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃! 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ) |
29 |
|
df-rmo |
⊢ ( ∃* 𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ∃* 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ) |
30 |
29
|
anbi2i |
⊢ ( ( ∃ 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ∧ ∃* 𝑏 ∈ On 𝐴 = suc 𝑏 ) ↔ ( ∃ 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ∧ ∃* 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ) ) |
31 |
27 28 30
|
3bitr4i |
⊢ ( ∃! 𝑏 ∈ On 𝐴 = suc 𝑏 ↔ ( ∃ 𝑏 ( 𝑏 ∈ On ∧ 𝐴 = suc 𝑏 ) ∧ ∃* 𝑏 ∈ On 𝐴 = suc 𝑏 ) ) |
32 |
24 26 31
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) → ∃! 𝑏 ∈ On 𝐴 = suc 𝑏 ) |