| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onuni | ⊢ ( 𝐴  ∈  On  →  ∪  𝐴  ∈  On ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ∪  𝐴  ∈  On ) | 
						
							| 3 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 4 |  | unizlim | ⊢ ( Ord  𝐴  →  ( 𝐴  =  ∪  𝐴  ↔  ( 𝐴  =  ∅  ∨  Lim  𝐴 ) ) ) | 
						
							| 5 |  | oran | ⊢ ( ( 𝐴  =  ∅  ∨  Lim  𝐴 )  ↔  ¬  ( ¬  𝐴  =  ∅  ∧  ¬  Lim  𝐴 ) ) | 
						
							| 6 |  | df-ne | ⊢ ( 𝐴  ≠  ∅  ↔  ¬  𝐴  =  ∅ ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  Lim  𝐴 ) ) | 
						
							| 8 | 5 7 | xchbinxr | ⊢ ( ( 𝐴  =  ∅  ∨  Lim  𝐴 )  ↔  ¬  ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 ) ) | 
						
							| 9 | 4 8 | bitrdi | ⊢ ( Ord  𝐴  →  ( 𝐴  =  ∪  𝐴  ↔  ¬  ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 ) ) ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∪  𝐴  ↔  ¬  ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 ) ) ) | 
						
							| 11 |  | pm2.21 | ⊢ ( ¬  ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 12 | 10 11 | biimtrdi | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∪  𝐴  →  ( ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  𝐴  =  suc  ∪  𝐴 ) ) ) | 
						
							| 13 | 12 | com23 | ⊢ ( 𝐴  ∈  On  →  ( ( 𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( 𝐴  =  ∪  𝐴  →  𝐴  =  suc  ∪  𝐴 ) ) ) | 
						
							| 14 | 13 | 3impib | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( 𝐴  =  ∪  𝐴  →  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 15 |  | idd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( 𝐴  =  suc  ∪  𝐴  →  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 16 |  | onuniorsuc | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∪  𝐴  ∨  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( 𝐴  =  ∪  𝐴  ∨  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 18 | 14 15 17 | mpjaod | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  𝐴  =  suc  ∪  𝐴 ) | 
						
							| 19 | 2 18 | jca | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ( ∪  𝐴  ∈  On  ∧  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑏  =  ∪  𝐴  →  ( 𝑏  ∈  On  ↔  ∪  𝐴  ∈  On ) ) | 
						
							| 21 |  | suceq | ⊢ ( 𝑏  =  ∪  𝐴  →  suc  𝑏  =  suc  ∪  𝐴 ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑏  =  ∪  𝐴  →  ( 𝐴  =  suc  𝑏  ↔  𝐴  =  suc  ∪  𝐴 ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( 𝑏  =  ∪  𝐴  →  ( ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ↔  ( ∪  𝐴  ∈  On  ∧  𝐴  =  suc  ∪  𝐴 ) ) ) | 
						
							| 24 | 2 19 23 | spcedv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ∃ 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 ) ) | 
						
							| 25 |  | onsucf1lem | ⊢ ( 𝐴  ∈  On  →  ∃* 𝑏  ∈  On 𝐴  =  suc  𝑏 ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ∃* 𝑏  ∈  On 𝐴  =  suc  𝑏 ) | 
						
							| 27 |  | df-eu | ⊢ ( ∃! 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ↔  ( ∃ 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ∧  ∃* 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 ) ) ) | 
						
							| 28 |  | df-reu | ⊢ ( ∃! 𝑏  ∈  On 𝐴  =  suc  𝑏  ↔  ∃! 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 ) ) | 
						
							| 29 |  | df-rmo | ⊢ ( ∃* 𝑏  ∈  On 𝐴  =  suc  𝑏  ↔  ∃* 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 ) ) | 
						
							| 30 | 29 | anbi2i | ⊢ ( ( ∃ 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ∧  ∃* 𝑏  ∈  On 𝐴  =  suc  𝑏 )  ↔  ( ∃ 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ∧  ∃* 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 ) ) ) | 
						
							| 31 | 27 28 30 | 3bitr4i | ⊢ ( ∃! 𝑏  ∈  On 𝐴  =  suc  𝑏  ↔  ( ∃ 𝑏 ( 𝑏  ∈  On  ∧  𝐴  =  suc  𝑏 )  ∧  ∃* 𝑏  ∈  On 𝐴  =  suc  𝑏 ) ) | 
						
							| 32 | 24 26 31 | sylanbrc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐴  ≠  ∅  ∧  ¬  Lim  𝐴 )  →  ∃! 𝑏  ∈  On 𝐴  =  suc  𝑏 ) |