Metamath Proof Explorer


Theorem oppcterm

Description: The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcterm.o
|- O = ( oppCat ` C )
oppcterm.c
|- ( ph -> C e. TermCat )
Assertion oppcterm
|- ( ph -> O e. TermCat )

Proof

Step Hyp Ref Expression
1 oppcterm.o
 |-  O = ( oppCat ` C )
2 oppcterm.c
 |-  ( ph -> C e. TermCat )
3 1 2 oppctermhom
 |-  ( ph -> ( Homf ` C ) = ( Homf ` O ) )
4 1 2 oppctermco
 |-  ( ph -> ( comf ` C ) = ( comf ` O ) )
5 1 fvexi
 |-  O e. _V
6 5 a1i
 |-  ( ph -> O e. _V )
7 3 4 2 6 termcpropd
 |-  ( ph -> ( C e. TermCat <-> O e. TermCat ) )
8 2 7 mpbid
 |-  ( ph -> O e. TermCat )