Description: The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcterm.o | |- O = ( oppCat ` C ) |
|
| oppcterm.c | |- ( ph -> C e. TermCat ) |
||
| Assertion | oppcterm | |- ( ph -> O e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcterm.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcterm.c | |- ( ph -> C e. TermCat ) |
|
| 3 | 1 2 | oppctermhom | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |
| 4 | 1 2 | oppctermco | |- ( ph -> ( comf ` C ) = ( comf ` O ) ) |
| 5 | 1 | fvexi | |- O e. _V |
| 6 | 5 | a1i | |- ( ph -> O e. _V ) |
| 7 | 3 4 2 6 | termcpropd | |- ( ph -> ( C e. TermCat <-> O e. TermCat ) ) |
| 8 | 2 7 | mpbid | |- ( ph -> O e. TermCat ) |