Metamath Proof Explorer


Theorem oppcterm

Description: The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcterm.o 𝑂 = ( oppCat ‘ 𝐶 )
oppcterm.c ( 𝜑𝐶 ∈ TermCat )
Assertion oppcterm ( 𝜑𝑂 ∈ TermCat )

Proof

Step Hyp Ref Expression
1 oppcterm.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppcterm.c ( 𝜑𝐶 ∈ TermCat )
3 1 2 oppctermhom ( 𝜑 → ( Homf𝐶 ) = ( Homf𝑂 ) )
4 1 2 oppctermco ( 𝜑 → ( compf𝐶 ) = ( compf𝑂 ) )
5 1 fvexi 𝑂 ∈ V
6 5 a1i ( 𝜑𝑂 ∈ V )
7 3 4 2 6 termcpropd ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝑂 ∈ TermCat ) )
8 2 7 mpbid ( 𝜑𝑂 ∈ TermCat )