Metamath Proof Explorer
Description: The opposite category of a terminal category is a terminal category.
(Contributed by Zhi Wang, 16-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
oppcterm.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
|
|
oppcterm.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
|
Assertion |
oppcterm |
⊢ ( 𝜑 → 𝑂 ∈ TermCat ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcterm.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppcterm.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 3 |
1 2
|
oppctermhom |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 4 |
1 2
|
oppctermco |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝑂 ) ) |
| 5 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 𝑂 ∈ V ) |
| 7 |
3 4 2 6
|
termcpropd |
⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝑂 ∈ TermCat ) ) |
| 8 |
2 7
|
mpbid |
⊢ ( 𝜑 → 𝑂 ∈ TermCat ) |