Metamath Proof Explorer


Theorem ordunpr

Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion ordunpr
|- ( ( B e. On /\ C e. On ) -> ( B u. C ) e. { B , C } )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( B e. On -> Ord B )
2 eloni
 |-  ( C e. On -> Ord C )
3 ordtri2or2
 |-  ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) )
4 1 2 3 syl2an
 |-  ( ( B e. On /\ C e. On ) -> ( B C_ C \/ C C_ B ) )
5 4 orcomd
 |-  ( ( B e. On /\ C e. On ) -> ( C C_ B \/ B C_ C ) )
6 ssequn2
 |-  ( C C_ B <-> ( B u. C ) = B )
7 ssequn1
 |-  ( B C_ C <-> ( B u. C ) = C )
8 6 7 orbi12i
 |-  ( ( C C_ B \/ B C_ C ) <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) )
9 5 8 sylib
 |-  ( ( B e. On /\ C e. On ) -> ( ( B u. C ) = B \/ ( B u. C ) = C ) )
10 unexg
 |-  ( ( B e. On /\ C e. On ) -> ( B u. C ) e. _V )
11 elprg
 |-  ( ( B u. C ) e. _V -> ( ( B u. C ) e. { B , C } <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) )
12 10 11 syl
 |-  ( ( B e. On /\ C e. On ) -> ( ( B u. C ) e. { B , C } <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) )
13 9 12 mpbird
 |-  ( ( B e. On /\ C e. On ) -> ( B u. C ) e. { B , C } )