| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolshft.1 |
|- ( ph -> A C_ RR ) |
| 2 |
|
ovolshft.2 |
|- ( ph -> C e. RR ) |
| 3 |
|
ovolshft.3 |
|- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
| 4 |
|
ovolshft.4 |
|- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
| 5 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ RR ) |
| 6 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> C e. RR ) |
| 7 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> B = { x e. RR | ( x - C ) e. A } ) |
| 8 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. g ) ) = seq 1 ( + , ( ( abs o. - ) o. g ) ) |
| 9 |
|
2fveq3 |
|- ( m = n -> ( 1st ` ( g ` m ) ) = ( 1st ` ( g ` n ) ) ) |
| 10 |
9
|
oveq1d |
|- ( m = n -> ( ( 1st ` ( g ` m ) ) + C ) = ( ( 1st ` ( g ` n ) ) + C ) ) |
| 11 |
|
2fveq3 |
|- ( m = n -> ( 2nd ` ( g ` m ) ) = ( 2nd ` ( g ` n ) ) ) |
| 12 |
11
|
oveq1d |
|- ( m = n -> ( ( 2nd ` ( g ` m ) ) + C ) = ( ( 2nd ` ( g ` n ) ) + C ) ) |
| 13 |
10 12
|
opeq12d |
|- ( m = n -> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. = <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) |
| 14 |
13
|
cbvmptv |
|- ( m e. NN |-> <. ( ( 1st ` ( g ` m ) ) + C ) , ( ( 2nd ` ( g ` m ) ) + C ) >. ) = ( n e. NN |-> <. ( ( 1st ` ( g ` n ) ) + C ) , ( ( 2nd ` ( g ` n ) ) + C ) >. ) |
| 15 |
|
simplr |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 16 |
|
elovolmlem |
|- ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> g : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 17 |
15 16
|
sylib |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> g : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 18 |
|
simpr |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> A C_ U. ran ( (,) o. g ) ) |
| 19 |
5 6 7 4 8 14 17 18
|
ovolshftlem1 |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M ) |
| 20 |
|
eleq1a |
|- ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) e. M -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) |
| 21 |
19 20
|
syl |
|- ( ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) /\ A C_ U. ran ( (,) o. g ) ) -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) -> z e. M ) ) |
| 22 |
21
|
expimpd |
|- ( ( ( ph /\ z e. RR* ) /\ g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) -> ( ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 23 |
22
|
rexlimdva |
|- ( ( ph /\ z e. RR* ) -> ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 24 |
23
|
ralrimiva |
|- ( ph -> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 25 |
|
rabss |
|- ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M <-> A. z e. RR* ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) -> z e. M ) ) |
| 26 |
24 25
|
sylibr |
|- ( ph -> { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ M ) |